Loading…

Mechanisms of sodium/calcium selectivity in sodium channels probed by cysteine mutagenesis and sulfhydryl modification

A conserved lysine residue in the "P loop" of domain III renders sodium channels highly selective. Conversion of this residue to glutamate, to mimic the homologous position in calcium channels, enables Ca2+ to permeate sodium channels. Because the lysine-to-glutamate mutation converts a po...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 1997-03, Vol.72 (3), p.989-996
Main Authors: Pérez-García, M.T., Chiamvimonvat, N., Ranjan, R., Balser, J.R., Tomaselli, G.F., Marban, E.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-b5f8bd78863d8d068a7f794cc334220f509e156dba443347c607c7e15e871f923
cites
container_end_page 996
container_issue 3
container_start_page 989
container_title Biophysical journal
container_volume 72
creator Pérez-García, M.T.
Chiamvimonvat, N.
Ranjan, R.
Balser, J.R.
Tomaselli, G.F.
Marban, E.
description A conserved lysine residue in the "P loop" of domain III renders sodium channels highly selective. Conversion of this residue to glutamate, to mimic the homologous position in calcium channels, enables Ca2+ to permeate sodium channels. Because the lysine-to-glutamate mutation converts a positively charged side chain to a negative one, it has been proposed that a positive charge at this position suffices for Na+ selectivity. We tested this idea by converting the critical lysine to cysteine (K1237C) in mu 1 rat skeletal sodium channels expressed in Xenopus oocytes. Selectivity of the mutant channels was then characterized before and after chemical modification to alter side-chain charge. Wild-type channels are highly selective for Na+ over Ca2+ (PCa/PNa < 0.01). The K1237C mutation significantly increases permeability to Ca2+ (PCa/PNa = 0.6) and Sr2+. Analogous mutations in domains I (D400C), II (E755C), and IV (A1529C) did not alter the selectivity for Na+ over Ca2+, nor did any of the domain IV mutations (G1530C, W1531C, and D1532C) that are known to affect monovalent selectivity. Interestingly, the increase in permeability to Ca2+ in K1237C cannot be reversed by simply restoring the positive charge to the side chain by using the sulfhydryl modifying reagent methanethiosulfonate ethylammonium. Single-channel studies confirmed that modified K1237C channels, which exhibit a reduced unitary conductance, remain permeable to Ca2+, with a PCa/PNa of 0.6. We conclude that the chemical identity of the residue at position 1237 is crucial for channel selectivity. Simply rendering the 1237 side chain positive does not suffice to restore selectivity to the channel.
doi_str_mv 10.1016/S0006-3495(97)78751-4
format article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1184487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349597787514</els_id><sourcerecordid>9138597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-b5f8bd78863d8d068a7f794cc334220f509e156dba443347c607c7e15e871f923</originalsourceid><addsrcrecordid>eNqFkU9P4zAQxS3ECsqfj1DJRziE2okdOxcQQuwuEmgPu5wtxx5To8Sp7LRSvj0urSo47WmkefN7I72H0JySG0povfhLCKmLijX8qhHXQgpOC3aEZpSzsiBE1sdodjg5RWcpvRNCS07oCTppaCV5I2Zo8wJmqYNPfcKDw2mwft0vjO5MnjhBB2b0Gz9O2Ie9irdAgC7hVRxasLidsJnSCD4A7tejfoMAySesg8Vp3bnlZOPU4T7Tzhs9-iFcoB9Odwku9_Mcvf58_Pfwu3j-8-vp4f65MKwux6LlTrZWSFlXVlpSSy2caJgxVcXKkjhOGqC8tq1mLK-EqYkwIq9ACuqasjpHtzvf1brtwRoIY9SdWkXf6zipQXv1XQl-qd6GjaJUMiZFNuA7AxOHlCK4A0uJ2vagPntQ25BVI9RnD4plbv718YHaB5_1u52ec4SNh6iS8RAMWB9z5MoO_j8fPgBpJpwW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanisms of sodium/calcium selectivity in sodium channels probed by cysteine mutagenesis and sulfhydryl modification</title><source>PubMed Central(OpenAccess)</source><creator>Pérez-García, M.T. ; Chiamvimonvat, N. ; Ranjan, R. ; Balser, J.R. ; Tomaselli, G.F. ; Marban, E.</creator><creatorcontrib>Pérez-García, M.T. ; Chiamvimonvat, N. ; Ranjan, R. ; Balser, J.R. ; Tomaselli, G.F. ; Marban, E.</creatorcontrib><description>A conserved lysine residue in the "P loop" of domain III renders sodium channels highly selective. Conversion of this residue to glutamate, to mimic the homologous position in calcium channels, enables Ca2+ to permeate sodium channels. Because the lysine-to-glutamate mutation converts a positively charged side chain to a negative one, it has been proposed that a positive charge at this position suffices for Na+ selectivity. We tested this idea by converting the critical lysine to cysteine (K1237C) in mu 1 rat skeletal sodium channels expressed in Xenopus oocytes. Selectivity of the mutant channels was then characterized before and after chemical modification to alter side-chain charge. Wild-type channels are highly selective for Na+ over Ca2+ (PCa/PNa &lt; 0.01). The K1237C mutation significantly increases permeability to Ca2+ (PCa/PNa = 0.6) and Sr2+. Analogous mutations in domains I (D400C), II (E755C), and IV (A1529C) did not alter the selectivity for Na+ over Ca2+, nor did any of the domain IV mutations (G1530C, W1531C, and D1532C) that are known to affect monovalent selectivity. Interestingly, the increase in permeability to Ca2+ in K1237C cannot be reversed by simply restoring the positive charge to the side chain by using the sulfhydryl modifying reagent methanethiosulfonate ethylammonium. Single-channel studies confirmed that modified K1237C channels, which exhibit a reduced unitary conductance, remain permeable to Ca2+, with a PCa/PNa of 0.6. We conclude that the chemical identity of the residue at position 1237 is crucial for channel selectivity. Simply rendering the 1237 side chain positive does not suffice to restore selectivity to the channel.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(97)78751-4</identifier><identifier>PMID: 9138597</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Calcium - metabolism ; Conserved Sequence ; Cysteine ; Lysine ; Membrane Potentials ; Models, Molecular ; Models, Structural ; Muscle, Skeletal - metabolism ; Mutagenesis, Site-Directed ; Patch-Clamp Techniques ; Point Mutation ; Protein Structure, Secondary ; Rats ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; Sodium - metabolism ; Sodium Channels - chemistry ; Sodium Channels - physiology ; Substrate Specificity</subject><ispartof>Biophysical journal, 1997-03, Vol.72 (3), p.989-996</ispartof><rights>1997 The Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-b5f8bd78863d8d068a7f794cc334220f509e156dba443347c607c7e15e871f923</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1184487/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1184487/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9138597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pérez-García, M.T.</creatorcontrib><creatorcontrib>Chiamvimonvat, N.</creatorcontrib><creatorcontrib>Ranjan, R.</creatorcontrib><creatorcontrib>Balser, J.R.</creatorcontrib><creatorcontrib>Tomaselli, G.F.</creatorcontrib><creatorcontrib>Marban, E.</creatorcontrib><title>Mechanisms of sodium/calcium selectivity in sodium channels probed by cysteine mutagenesis and sulfhydryl modification</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>A conserved lysine residue in the "P loop" of domain III renders sodium channels highly selective. Conversion of this residue to glutamate, to mimic the homologous position in calcium channels, enables Ca2+ to permeate sodium channels. Because the lysine-to-glutamate mutation converts a positively charged side chain to a negative one, it has been proposed that a positive charge at this position suffices for Na+ selectivity. We tested this idea by converting the critical lysine to cysteine (K1237C) in mu 1 rat skeletal sodium channels expressed in Xenopus oocytes. Selectivity of the mutant channels was then characterized before and after chemical modification to alter side-chain charge. Wild-type channels are highly selective for Na+ over Ca2+ (PCa/PNa &lt; 0.01). The K1237C mutation significantly increases permeability to Ca2+ (PCa/PNa = 0.6) and Sr2+. Analogous mutations in domains I (D400C), II (E755C), and IV (A1529C) did not alter the selectivity for Na+ over Ca2+, nor did any of the domain IV mutations (G1530C, W1531C, and D1532C) that are known to affect monovalent selectivity. Interestingly, the increase in permeability to Ca2+ in K1237C cannot be reversed by simply restoring the positive charge to the side chain by using the sulfhydryl modifying reagent methanethiosulfonate ethylammonium. Single-channel studies confirmed that modified K1237C channels, which exhibit a reduced unitary conductance, remain permeable to Ca2+, with a PCa/PNa of 0.6. We conclude that the chemical identity of the residue at position 1237 is crucial for channel selectivity. Simply rendering the 1237 side chain positive does not suffice to restore selectivity to the channel.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Calcium - metabolism</subject><subject>Conserved Sequence</subject><subject>Cysteine</subject><subject>Lysine</subject><subject>Membrane Potentials</subject><subject>Models, Molecular</subject><subject>Models, Structural</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Mutagenesis, Site-Directed</subject><subject>Patch-Clamp Techniques</subject><subject>Point Mutation</subject><subject>Protein Structure, Secondary</subject><subject>Rats</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sodium - metabolism</subject><subject>Sodium Channels - chemistry</subject><subject>Sodium Channels - physiology</subject><subject>Substrate Specificity</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkU9P4zAQxS3ECsqfj1DJRziE2okdOxcQQuwuEmgPu5wtxx5To8Sp7LRSvj0urSo47WmkefN7I72H0JySG0povfhLCKmLijX8qhHXQgpOC3aEZpSzsiBE1sdodjg5RWcpvRNCS07oCTppaCV5I2Zo8wJmqYNPfcKDw2mwft0vjO5MnjhBB2b0Gz9O2Ie9irdAgC7hVRxasLidsJnSCD4A7tejfoMAySesg8Vp3bnlZOPU4T7Tzhs9-iFcoB9Odwku9_Mcvf58_Pfwu3j-8-vp4f65MKwux6LlTrZWSFlXVlpSSy2caJgxVcXKkjhOGqC8tq1mLK-EqYkwIq9ACuqasjpHtzvf1brtwRoIY9SdWkXf6zipQXv1XQl-qd6GjaJUMiZFNuA7AxOHlCK4A0uJ2vagPntQ25BVI9RnD4plbv718YHaB5_1u52ec4SNh6iS8RAMWB9z5MoO_j8fPgBpJpwW</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>Pérez-García, M.T.</creator><creator>Chiamvimonvat, N.</creator><creator>Ranjan, R.</creator><creator>Balser, J.R.</creator><creator>Tomaselli, G.F.</creator><creator>Marban, E.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>19970301</creationdate><title>Mechanisms of sodium/calcium selectivity in sodium channels probed by cysteine mutagenesis and sulfhydryl modification</title><author>Pérez-García, M.T. ; Chiamvimonvat, N. ; Ranjan, R. ; Balser, J.R. ; Tomaselli, G.F. ; Marban, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-b5f8bd78863d8d068a7f794cc334220f509e156dba443347c607c7e15e871f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Calcium - metabolism</topic><topic>Conserved Sequence</topic><topic>Cysteine</topic><topic>Lysine</topic><topic>Membrane Potentials</topic><topic>Models, Molecular</topic><topic>Models, Structural</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Mutagenesis, Site-Directed</topic><topic>Patch-Clamp Techniques</topic><topic>Point Mutation</topic><topic>Protein Structure, Secondary</topic><topic>Rats</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sodium - metabolism</topic><topic>Sodium Channels - chemistry</topic><topic>Sodium Channels - physiology</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-García, M.T.</creatorcontrib><creatorcontrib>Chiamvimonvat, N.</creatorcontrib><creatorcontrib>Ranjan, R.</creatorcontrib><creatorcontrib>Balser, J.R.</creatorcontrib><creatorcontrib>Tomaselli, G.F.</creatorcontrib><creatorcontrib>Marban, E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-García, M.T.</au><au>Chiamvimonvat, N.</au><au>Ranjan, R.</au><au>Balser, J.R.</au><au>Tomaselli, G.F.</au><au>Marban, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of sodium/calcium selectivity in sodium channels probed by cysteine mutagenesis and sulfhydryl modification</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1997-03-01</date><risdate>1997</risdate><volume>72</volume><issue>3</issue><spage>989</spage><epage>996</epage><pages>989-996</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>A conserved lysine residue in the "P loop" of domain III renders sodium channels highly selective. Conversion of this residue to glutamate, to mimic the homologous position in calcium channels, enables Ca2+ to permeate sodium channels. Because the lysine-to-glutamate mutation converts a positively charged side chain to a negative one, it has been proposed that a positive charge at this position suffices for Na+ selectivity. We tested this idea by converting the critical lysine to cysteine (K1237C) in mu 1 rat skeletal sodium channels expressed in Xenopus oocytes. Selectivity of the mutant channels was then characterized before and after chemical modification to alter side-chain charge. Wild-type channels are highly selective for Na+ over Ca2+ (PCa/PNa &lt; 0.01). The K1237C mutation significantly increases permeability to Ca2+ (PCa/PNa = 0.6) and Sr2+. Analogous mutations in domains I (D400C), II (E755C), and IV (A1529C) did not alter the selectivity for Na+ over Ca2+, nor did any of the domain IV mutations (G1530C, W1531C, and D1532C) that are known to affect monovalent selectivity. Interestingly, the increase in permeability to Ca2+ in K1237C cannot be reversed by simply restoring the positive charge to the side chain by using the sulfhydryl modifying reagent methanethiosulfonate ethylammonium. Single-channel studies confirmed that modified K1237C channels, which exhibit a reduced unitary conductance, remain permeable to Ca2+, with a PCa/PNa of 0.6. We conclude that the chemical identity of the residue at position 1237 is crucial for channel selectivity. Simply rendering the 1237 side chain positive does not suffice to restore selectivity to the channel.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9138597</pmid><doi>10.1016/S0006-3495(97)78751-4</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 1997-03, Vol.72 (3), p.989-996
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1184487
source PubMed Central(OpenAccess)
subjects Amino Acid Sequence
Animals
Calcium - metabolism
Conserved Sequence
Cysteine
Lysine
Membrane Potentials
Models, Molecular
Models, Structural
Muscle, Skeletal - metabolism
Mutagenesis, Site-Directed
Patch-Clamp Techniques
Point Mutation
Protein Structure, Secondary
Rats
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
Sodium - metabolism
Sodium Channels - chemistry
Sodium Channels - physiology
Substrate Specificity
title Mechanisms of sodium/calcium selectivity in sodium channels probed by cysteine mutagenesis and sulfhydryl modification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20sodium/calcium%20selectivity%20in%20sodium%20channels%20probed%20by%20cysteine%20mutagenesis%20and%20sulfhydryl%20modification&rft.jtitle=Biophysical%20journal&rft.au=P%C3%A9rez-Garc%C3%ADa,%20M.T.&rft.date=1997-03-01&rft.volume=72&rft.issue=3&rft.spage=989&rft.epage=996&rft.pages=989-996&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(97)78751-4&rft_dat=%3Cpubmed_cross%3E9138597%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-b5f8bd78863d8d068a7f794cc334220f509e156dba443347c607c7e15e871f923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/9138597&rfr_iscdi=true