Loading…
Mechanisms of sodium/calcium selectivity in sodium channels probed by cysteine mutagenesis and sulfhydryl modification
A conserved lysine residue in the "P loop" of domain III renders sodium channels highly selective. Conversion of this residue to glutamate, to mimic the homologous position in calcium channels, enables Ca2+ to permeate sodium channels. Because the lysine-to-glutamate mutation converts a po...
Saved in:
Published in: | Biophysical journal 1997-03, Vol.72 (3), p.989-996 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c462t-b5f8bd78863d8d068a7f794cc334220f509e156dba443347c607c7e15e871f923 |
---|---|
cites | |
container_end_page | 996 |
container_issue | 3 |
container_start_page | 989 |
container_title | Biophysical journal |
container_volume | 72 |
creator | Pérez-García, M.T. Chiamvimonvat, N. Ranjan, R. Balser, J.R. Tomaselli, G.F. Marban, E. |
description | A conserved lysine residue in the "P loop" of domain III renders sodium channels highly selective. Conversion of this residue to glutamate, to mimic the homologous position in calcium channels, enables Ca2+ to permeate sodium channels. Because the lysine-to-glutamate mutation converts a positively charged side chain to a negative one, it has been proposed that a positive charge at this position suffices for Na+ selectivity. We tested this idea by converting the critical lysine to cysteine (K1237C) in mu 1 rat skeletal sodium channels expressed in Xenopus oocytes. Selectivity of the mutant channels was then characterized before and after chemical modification to alter side-chain charge. Wild-type channels are highly selective for Na+ over Ca2+ (PCa/PNa < 0.01). The K1237C mutation significantly increases permeability to Ca2+ (PCa/PNa = 0.6) and Sr2+. Analogous mutations in domains I (D400C), II (E755C), and IV (A1529C) did not alter the selectivity for Na+ over Ca2+, nor did any of the domain IV mutations (G1530C, W1531C, and D1532C) that are known to affect monovalent selectivity. Interestingly, the increase in permeability to Ca2+ in K1237C cannot be reversed by simply restoring the positive charge to the side chain by using the sulfhydryl modifying reagent methanethiosulfonate ethylammonium. Single-channel studies confirmed that modified K1237C channels, which exhibit a reduced unitary conductance, remain permeable to Ca2+, with a PCa/PNa of 0.6. We conclude that the chemical identity of the residue at position 1237 is crucial for channel selectivity. Simply rendering the 1237 side chain positive does not suffice to restore selectivity to the channel. |
doi_str_mv | 10.1016/S0006-3495(97)78751-4 |
format | article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1184487</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349597787514</els_id><sourcerecordid>9138597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-b5f8bd78863d8d068a7f794cc334220f509e156dba443347c607c7e15e871f923</originalsourceid><addsrcrecordid>eNqFkU9P4zAQxS3ECsqfj1DJRziE2okdOxcQQuwuEmgPu5wtxx5To8Sp7LRSvj0urSo47WmkefN7I72H0JySG0povfhLCKmLijX8qhHXQgpOC3aEZpSzsiBE1sdodjg5RWcpvRNCS07oCTppaCV5I2Zo8wJmqYNPfcKDw2mwft0vjO5MnjhBB2b0Gz9O2Ie9irdAgC7hVRxasLidsJnSCD4A7tejfoMAySesg8Vp3bnlZOPU4T7Tzhs9-iFcoB9Odwku9_Mcvf58_Pfwu3j-8-vp4f65MKwux6LlTrZWSFlXVlpSSy2caJgxVcXKkjhOGqC8tq1mLK-EqYkwIq9ACuqasjpHtzvf1brtwRoIY9SdWkXf6zipQXv1XQl-qd6GjaJUMiZFNuA7AxOHlCK4A0uJ2vagPntQ25BVI9RnD4plbv718YHaB5_1u52ec4SNh6iS8RAMWB9z5MoO_j8fPgBpJpwW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanisms of sodium/calcium selectivity in sodium channels probed by cysteine mutagenesis and sulfhydryl modification</title><source>PubMed Central(OpenAccess)</source><creator>Pérez-García, M.T. ; Chiamvimonvat, N. ; Ranjan, R. ; Balser, J.R. ; Tomaselli, G.F. ; Marban, E.</creator><creatorcontrib>Pérez-García, M.T. ; Chiamvimonvat, N. ; Ranjan, R. ; Balser, J.R. ; Tomaselli, G.F. ; Marban, E.</creatorcontrib><description>A conserved lysine residue in the "P loop" of domain III renders sodium channels highly selective. Conversion of this residue to glutamate, to mimic the homologous position in calcium channels, enables Ca2+ to permeate sodium channels. Because the lysine-to-glutamate mutation converts a positively charged side chain to a negative one, it has been proposed that a positive charge at this position suffices for Na+ selectivity. We tested this idea by converting the critical lysine to cysteine (K1237C) in mu 1 rat skeletal sodium channels expressed in Xenopus oocytes. Selectivity of the mutant channels was then characterized before and after chemical modification to alter side-chain charge. Wild-type channels are highly selective for Na+ over Ca2+ (PCa/PNa < 0.01). The K1237C mutation significantly increases permeability to Ca2+ (PCa/PNa = 0.6) and Sr2+. Analogous mutations in domains I (D400C), II (E755C), and IV (A1529C) did not alter the selectivity for Na+ over Ca2+, nor did any of the domain IV mutations (G1530C, W1531C, and D1532C) that are known to affect monovalent selectivity. Interestingly, the increase in permeability to Ca2+ in K1237C cannot be reversed by simply restoring the positive charge to the side chain by using the sulfhydryl modifying reagent methanethiosulfonate ethylammonium. Single-channel studies confirmed that modified K1237C channels, which exhibit a reduced unitary conductance, remain permeable to Ca2+, with a PCa/PNa of 0.6. We conclude that the chemical identity of the residue at position 1237 is crucial for channel selectivity. Simply rendering the 1237 side chain positive does not suffice to restore selectivity to the channel.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(97)78751-4</identifier><identifier>PMID: 9138597</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; Animals ; Calcium - metabolism ; Conserved Sequence ; Cysteine ; Lysine ; Membrane Potentials ; Models, Molecular ; Models, Structural ; Muscle, Skeletal - metabolism ; Mutagenesis, Site-Directed ; Patch-Clamp Techniques ; Point Mutation ; Protein Structure, Secondary ; Rats ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; Sodium - metabolism ; Sodium Channels - chemistry ; Sodium Channels - physiology ; Substrate Specificity</subject><ispartof>Biophysical journal, 1997-03, Vol.72 (3), p.989-996</ispartof><rights>1997 The Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-b5f8bd78863d8d068a7f794cc334220f509e156dba443347c607c7e15e871f923</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1184487/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1184487/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9138597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pérez-García, M.T.</creatorcontrib><creatorcontrib>Chiamvimonvat, N.</creatorcontrib><creatorcontrib>Ranjan, R.</creatorcontrib><creatorcontrib>Balser, J.R.</creatorcontrib><creatorcontrib>Tomaselli, G.F.</creatorcontrib><creatorcontrib>Marban, E.</creatorcontrib><title>Mechanisms of sodium/calcium selectivity in sodium channels probed by cysteine mutagenesis and sulfhydryl modification</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>A conserved lysine residue in the "P loop" of domain III renders sodium channels highly selective. Conversion of this residue to glutamate, to mimic the homologous position in calcium channels, enables Ca2+ to permeate sodium channels. Because the lysine-to-glutamate mutation converts a positively charged side chain to a negative one, it has been proposed that a positive charge at this position suffices for Na+ selectivity. We tested this idea by converting the critical lysine to cysteine (K1237C) in mu 1 rat skeletal sodium channels expressed in Xenopus oocytes. Selectivity of the mutant channels was then characterized before and after chemical modification to alter side-chain charge. Wild-type channels are highly selective for Na+ over Ca2+ (PCa/PNa < 0.01). The K1237C mutation significantly increases permeability to Ca2+ (PCa/PNa = 0.6) and Sr2+. Analogous mutations in domains I (D400C), II (E755C), and IV (A1529C) did not alter the selectivity for Na+ over Ca2+, nor did any of the domain IV mutations (G1530C, W1531C, and D1532C) that are known to affect monovalent selectivity. Interestingly, the increase in permeability to Ca2+ in K1237C cannot be reversed by simply restoring the positive charge to the side chain by using the sulfhydryl modifying reagent methanethiosulfonate ethylammonium. Single-channel studies confirmed that modified K1237C channels, which exhibit a reduced unitary conductance, remain permeable to Ca2+, with a PCa/PNa of 0.6. We conclude that the chemical identity of the residue at position 1237 is crucial for channel selectivity. Simply rendering the 1237 side chain positive does not suffice to restore selectivity to the channel.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Calcium - metabolism</subject><subject>Conserved Sequence</subject><subject>Cysteine</subject><subject>Lysine</subject><subject>Membrane Potentials</subject><subject>Models, Molecular</subject><subject>Models, Structural</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Mutagenesis, Site-Directed</subject><subject>Patch-Clamp Techniques</subject><subject>Point Mutation</subject><subject>Protein Structure, Secondary</subject><subject>Rats</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sodium - metabolism</subject><subject>Sodium Channels - chemistry</subject><subject>Sodium Channels - physiology</subject><subject>Substrate Specificity</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNqFkU9P4zAQxS3ECsqfj1DJRziE2okdOxcQQuwuEmgPu5wtxx5To8Sp7LRSvj0urSo47WmkefN7I72H0JySG0povfhLCKmLijX8qhHXQgpOC3aEZpSzsiBE1sdodjg5RWcpvRNCS07oCTppaCV5I2Zo8wJmqYNPfcKDw2mwft0vjO5MnjhBB2b0Gz9O2Ie9irdAgC7hVRxasLidsJnSCD4A7tejfoMAySesg8Vp3bnlZOPU4T7Tzhs9-iFcoB9Odwku9_Mcvf58_Pfwu3j-8-vp4f65MKwux6LlTrZWSFlXVlpSSy2caJgxVcXKkjhOGqC8tq1mLK-EqYkwIq9ACuqasjpHtzvf1brtwRoIY9SdWkXf6zipQXv1XQl-qd6GjaJUMiZFNuA7AxOHlCK4A0uJ2vagPntQ25BVI9RnD4plbv718YHaB5_1u52ec4SNh6iS8RAMWB9z5MoO_j8fPgBpJpwW</recordid><startdate>19970301</startdate><enddate>19970301</enddate><creator>Pérez-García, M.T.</creator><creator>Chiamvimonvat, N.</creator><creator>Ranjan, R.</creator><creator>Balser, J.R.</creator><creator>Tomaselli, G.F.</creator><creator>Marban, E.</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>19970301</creationdate><title>Mechanisms of sodium/calcium selectivity in sodium channels probed by cysteine mutagenesis and sulfhydryl modification</title><author>Pérez-García, M.T. ; Chiamvimonvat, N. ; Ranjan, R. ; Balser, J.R. ; Tomaselli, G.F. ; Marban, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-b5f8bd78863d8d068a7f794cc334220f509e156dba443347c607c7e15e871f923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Calcium - metabolism</topic><topic>Conserved Sequence</topic><topic>Cysteine</topic><topic>Lysine</topic><topic>Membrane Potentials</topic><topic>Models, Molecular</topic><topic>Models, Structural</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Mutagenesis, Site-Directed</topic><topic>Patch-Clamp Techniques</topic><topic>Point Mutation</topic><topic>Protein Structure, Secondary</topic><topic>Rats</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sodium - metabolism</topic><topic>Sodium Channels - chemistry</topic><topic>Sodium Channels - physiology</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pérez-García, M.T.</creatorcontrib><creatorcontrib>Chiamvimonvat, N.</creatorcontrib><creatorcontrib>Ranjan, R.</creatorcontrib><creatorcontrib>Balser, J.R.</creatorcontrib><creatorcontrib>Tomaselli, G.F.</creatorcontrib><creatorcontrib>Marban, E.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pérez-García, M.T.</au><au>Chiamvimonvat, N.</au><au>Ranjan, R.</au><au>Balser, J.R.</au><au>Tomaselli, G.F.</au><au>Marban, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanisms of sodium/calcium selectivity in sodium channels probed by cysteine mutagenesis and sulfhydryl modification</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1997-03-01</date><risdate>1997</risdate><volume>72</volume><issue>3</issue><spage>989</spage><epage>996</epage><pages>989-996</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>A conserved lysine residue in the "P loop" of domain III renders sodium channels highly selective. Conversion of this residue to glutamate, to mimic the homologous position in calcium channels, enables Ca2+ to permeate sodium channels. Because the lysine-to-glutamate mutation converts a positively charged side chain to a negative one, it has been proposed that a positive charge at this position suffices for Na+ selectivity. We tested this idea by converting the critical lysine to cysteine (K1237C) in mu 1 rat skeletal sodium channels expressed in Xenopus oocytes. Selectivity of the mutant channels was then characterized before and after chemical modification to alter side-chain charge. Wild-type channels are highly selective for Na+ over Ca2+ (PCa/PNa < 0.01). The K1237C mutation significantly increases permeability to Ca2+ (PCa/PNa = 0.6) and Sr2+. Analogous mutations in domains I (D400C), II (E755C), and IV (A1529C) did not alter the selectivity for Na+ over Ca2+, nor did any of the domain IV mutations (G1530C, W1531C, and D1532C) that are known to affect monovalent selectivity. Interestingly, the increase in permeability to Ca2+ in K1237C cannot be reversed by simply restoring the positive charge to the side chain by using the sulfhydryl modifying reagent methanethiosulfonate ethylammonium. Single-channel studies confirmed that modified K1237C channels, which exhibit a reduced unitary conductance, remain permeable to Ca2+, with a PCa/PNa of 0.6. We conclude that the chemical identity of the residue at position 1237 is crucial for channel selectivity. Simply rendering the 1237 side chain positive does not suffice to restore selectivity to the channel.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9138597</pmid><doi>10.1016/S0006-3495(97)78751-4</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 1997-03, Vol.72 (3), p.989-996 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1184487 |
source | PubMed Central(OpenAccess) |
subjects | Amino Acid Sequence Animals Calcium - metabolism Conserved Sequence Cysteine Lysine Membrane Potentials Models, Molecular Models, Structural Muscle, Skeletal - metabolism Mutagenesis, Site-Directed Patch-Clamp Techniques Point Mutation Protein Structure, Secondary Rats Recombinant Proteins - chemistry Recombinant Proteins - metabolism Sodium - metabolism Sodium Channels - chemistry Sodium Channels - physiology Substrate Specificity |
title | Mechanisms of sodium/calcium selectivity in sodium channels probed by cysteine mutagenesis and sulfhydryl modification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T03%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanisms%20of%20sodium/calcium%20selectivity%20in%20sodium%20channels%20probed%20by%20cysteine%20mutagenesis%20and%20sulfhydryl%20modification&rft.jtitle=Biophysical%20journal&rft.au=P%C3%A9rez-Garc%C3%ADa,%20M.T.&rft.date=1997-03-01&rft.volume=72&rft.issue=3&rft.spage=989&rft.epage=996&rft.pages=989-996&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(97)78751-4&rft_dat=%3Cpubmed_cross%3E9138597%3C/pubmed_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-b5f8bd78863d8d068a7f794cc334220f509e156dba443347c607c7e15e871f923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/9138597&rfr_iscdi=true |