Loading…
Behaviour of motor units of human arm muscles: differences between slow isometric contraction and relaxation
The behaviour of motor units in the m. biceps brachii (long head), in the m. brachialis and in the m. supinator during slow isometric contraction and relaxation was studied when subjects were performing different motor tasks. These tasks were: flexion of the elbow joint, supination of the forearm an...
Saved in:
Published in: | The Journal of physiology 1985-02, Vol.359 (1), p.107-118 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The behaviour of motor units in the m. biceps brachii (long head), in the m. brachialis and in the m. supinator during slow
isometric contraction and relaxation was studied when subjects were performing different motor tasks. These tasks were: flexion
of the elbow joint, supination of the forearm and exorotation of the humerus. Motor unit activity was recorded by means of
bipolar fine wire electrodes. In the long head of the biceps, motor unit activity was recorded at medial, central and lateral
sites. When the subject relaxed from flexion, the firing rate of motor units located in the biceps and the brachialis was
always found to be lower than that at the corresponding level of flexion force during contraction. The firing rate during
relaxation decreased slowly and almost linearly with force. However, during relaxation from supination or exorotation, the
firing rate of motor units at medial and central locations in the biceps was more or less constant until decruitment. The
firing rate of motor units of the supinator during relaxation from supination decreased slowly and was lower than during contraction.
Motor units located medially and centrally in the biceps had decruitment thresholds for flexion that were lower than their
recruitment thresholds. Motor units on the lateral side of the biceps did not show such a difference. In the brachialis decruitment
thresholds for flexion were usually higher than the recruitment thresholds. Differences between decruitment and recruitment
thresholds for motor units in the biceps were much more pronounced for supination and exorotation than for flexion. For motor
units in the supinator the decruitment threshold during relaxation from supination was higher than the recruitment threshold.
The time that had passed after the onset of firing of a motor unit did not influence its decruitment threshold. If, after
complete relaxation, the exerted force was increased again, it appeared that the recruitment threshold was changed. It took
about 4 s to reach the original recruitment threshold. It is concluded that the relation between the firing rate of a motor
unit and total exerted force depends on the phase of contraction. This relation varies within a muscle and between muscles.
Furthermore, the results indicate an interchange of activity within the motoneurone pools of the synergists involved in isometrical
motor tasks. |
---|---|
ISSN: | 0022-3751 1469-7793 |
DOI: | 10.1113/jphysiol.1985.sp015577 |