Loading…

Suppressors of SNF2 mutations restore invertase derepression and cause temperature-sensitive lethality in yeast

Mutations in the SNF2 gene of Saccharomyces cerevisiae prevent derepression of the SUC2 (invertase) gene, and other glucose-repressible genes, in response to glucose deprivation. We have isolated 25 partial phenotypic revertants of a snf2 mutant that are able to derepress secreted invertase. These r...

Full description

Saved in:
Bibliographic Details
Published in:Genetics (Austin) 1986-04, Vol.112 (4), p.741-753
Main Authors: Neigeborn, L, Rubin, K, Carlson, M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mutations in the SNF2 gene of Saccharomyces cerevisiae prevent derepression of the SUC2 (invertase) gene, and other glucose-repressible genes, in response to glucose deprivation. We have isolated 25 partial phenotypic revertants of a snf2 mutant that are able to derepress secreted invertase. These revertants all carried suppressor mutations at a single locus, designated SSN20 (suppressor of snf2). Alleles with dominant, partially dominant and recessive suppressor phenotypes were recovered, but all were only partial suppressors of snf2, reversing the defect in invertase synthesis but not other defects. All alleles also caused recessive, temperature-sensitive lethality and a recessive defect in galactose utilization, regardless of the SNF2 genotype. No significant effect on SUC2 expression was detected in a wild-type (SNF2) genetic background. The ssn20 mutations also suppressed the defects in invertase derepression caused by snf5 and snf6 mutations, and selection for invertase-producing revertants of snf5 mutants yielded only additional ssn20 alleles. These findings suggest that the roles of the SNF2, SNF5 and SNF6 genes in regulation of SUC2 are functionally related and that SSN20 plays a role in expression of a variety of yeast genes.
ISSN:0016-6731
1943-2631