Loading…

N-Terminal Mutations Modulate Yeast SNF1 Protein Kinase Function

The SNF1 protein kinase is required for expression of glucose-repressed genes in response to glucose deprivation. The SNF4 protein is physically associated with SNF1 and positively affects the kinase activity. We report here the characterization of a dominant mutation, SNF1-G53R, that was isolated a...

Full description

Saved in:
Bibliographic Details
Published in:Genetics (Austin) 1992-11, Vol.132 (3), p.639-650
Main Authors: Estruch, F, Treitel, M. A, Yang, X, Carlson, M
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The SNF1 protein kinase is required for expression of glucose-repressed genes in response to glucose deprivation. The SNF4 protein is physically associated with SNF1 and positively affects the kinase activity. We report here the characterization of a dominant mutation, SNF1-G53R, that was isolated as a suppressor of the requirement for SNF4. The mutant SNF1-G53R protein is still responsive to SNF4 but has greatly elevated kinase activity in immune complex assays; in contrast, the activity is wild type in a protein blot assay. Deletion of the region N-terminal to the kinase domain (codons 5-52) reduces kinase activity in vitro, but the mutant SNF1-delta N kinase is still dependent on SNF4. The N terminus is not required for the regulatory response to glucose. In gel filtration chromatography, the SNF1, SNF1-G53R and SNF1-delta N protein showed different elution profiles, consistent with differential formation of high molecular weight complexes. Taken together, the results suggest that the N terminus positively affects the function of the SNF1 kinase and may be involved in interaction with a positive effector other than SNF4. We also showed that the conserved threonine residue 210 in subdomain VIII, which is a phosphorylation site in other kinases, is essential for SNF1 activity. Finally, we present evidence that when the C terminus is deleted, overexpression of the SNF1 kinase domain is deleterious to the cell.
ISSN:0016-6731
1943-2631
1943-2631
DOI:10.1093/genetics/132.3.639