Loading…
Multiple pathways for homologous recombination in Saccharomyces cerevisiae
The genes in the RAD52 epistasis group of Saccharomyces cerevisiae are necessary for most mitotic and meiotic recombination events. Using an intrachromosomal inverted-repeat assay, we previously demonstrated that mitotic recombination of this substrate is dependent upon the RAD52 gene. In the presen...
Saved in:
Published in: | Genetics (Austin) 1995-01, Vol.139 (1), p.45-56 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c567t-3213289e6d0093840f1df5dc4985dd3d874699c0baa702a4f877531e742c9aa93 |
---|---|
cites | |
container_end_page | 56 |
container_issue | 1 |
container_start_page | 45 |
container_title | Genetics (Austin) |
container_volume | 139 |
creator | Rattray, A.J. (Columbia University College of Physicians and Surgeons, New York, NY.) Symington, L.S |
description | The genes in the RAD52 epistasis group of Saccharomyces cerevisiae are necessary for most mitotic and meiotic recombination events. Using an intrachromosomal inverted-repeat assay, we previously demonstrated that mitotic recombination of this substrate is dependent upon the RAD52 gene. In the present study the requirement for other genes in this epistasis group for recombination of inverted repeats has been analyzed, and double and triple mutant strains were examined for their epistatic relationships. The majority of recombination events are mediated by a RAD51-dependent pathway, where the RAD54, RAD55 and RAD57 genes function downstream of RAD51. Cells mutated in RAD55 or RAD57 as well as double mutants are cold-sensitive for inverted-repeat recombination, whereas a rad51 rad55 rad57 triple mutant is not. The RAD1 gene is not required for inverted-repeat recombination but is able to process spontaneous DNA lesions to produce recombinant products in the absence of RAD51. Furthermore, there is still considerably more recombination in rad1 rad51 mutants than in rad52 mutants, indicating the presence of another, as yet unidentified, recombination pathway |
doi_str_mv | 10.1093/genetics/139.1.45 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1206342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16709453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-3213289e6d0093840f1df5dc4985dd3d874699c0baa702a4f877531e742c9aa93</originalsourceid><addsrcrecordid>eNpdkU1v1DAURS0EKsPADwAJKUKCXaZ-8Ve8QUIVLaAiFqVr643jTFwl8WAnjebfYzRDVVh5cY-P3tUl5DXQDVDNzndudJO36RyY3sCGiydkBZqzspIMnpIVpSBLqRg8Jy9SuqOUSi3qM3KmFBWSixX59n3uJ7_vXbHHqVvwkIo2xKILQ-jDLsypiM6GYetHnHwYCz8WN2hthzEMB-tSYV109z55dC_Jsxb75F6d3jW5vfz88-JLef3j6uvFp-vSCqmmklXAqlo72dBcoea0haYVjeW6Fk3DmlpxqbWlW0RFK-RtrZRg4BSvrEbUbE0-Hr37eTu4xrpxitibffQDxoMJ6M2_yeg7swv3BioqGa-y4MNJEMOv2aXJDD5Z1_c4utzYgFRUc8Ey-O4_8C7McczlTAUcoGbAMwRHyMaQUnTtwyVAzZ-VzN-VTF7JgMnmNXn7uMLDj9MsOX9_zDu_6xYfnUkD9n2mwSzL8sjz5si1GAzuok_m9kYLlq9X7DddhaZd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214118314</pqid></control><display><type>article</type><title>Multiple pathways for homologous recombination in Saccharomyces cerevisiae</title><source>Freely Accessible Journals</source><source>Alma/SFX Local Collection</source><creator>Rattray, A.J. (Columbia University College of Physicians and Surgeons, New York, NY.) ; Symington, L.S</creator><creatorcontrib>Rattray, A.J. (Columbia University College of Physicians and Surgeons, New York, NY.) ; Symington, L.S</creatorcontrib><description>The genes in the RAD52 epistasis group of Saccharomyces cerevisiae are necessary for most mitotic and meiotic recombination events. Using an intrachromosomal inverted-repeat assay, we previously demonstrated that mitotic recombination of this substrate is dependent upon the RAD52 gene. In the present study the requirement for other genes in this epistasis group for recombination of inverted repeats has been analyzed, and double and triple mutant strains were examined for their epistatic relationships. The majority of recombination events are mediated by a RAD51-dependent pathway, where the RAD54, RAD55 and RAD57 genes function downstream of RAD51. Cells mutated in RAD55 or RAD57 as well as double mutants are cold-sensitive for inverted-repeat recombination, whereas a rad51 rad55 rad57 triple mutant is not. The RAD1 gene is not required for inverted-repeat recombination but is able to process spontaneous DNA lesions to produce recombinant products in the absence of RAD51. Furthermore, there is still considerably more recombination in rad1 rad51 mutants than in rad52 mutants, indicating the presence of another, as yet unidentified, recombination pathway</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/139.1.45</identifier><identifier>PMID: 7705645</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Soc America</publisher><subject>ADN ; Chromosome Inversion ; Crossing Over, Genetic ; DNA Damage ; Epistasis, Genetic ; Gamma Rays - adverse effects ; GENE ; Gene Conversion ; GENES ; Genes, Fungal - genetics ; Genetics ; INTERACCION DE GENES ; INTERACTION GENIQUE ; Investigations ; MITOSE ; MITOSIS ; Mitosis - genetics ; Models, Genetic ; MUTANT ; MUTANTES ; Radiation Tolerance - genetics ; RECOMBINACION ; RECOMBINAISON ; Recombination, Genetic - genetics ; Repetitive Sequences, Nucleic Acid ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - genetics ; Yeast</subject><ispartof>Genetics (Austin), 1995-01, Vol.139 (1), p.45-56</ispartof><rights>Copyright Genetics Society of America Jan 1995</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-3213289e6d0093840f1df5dc4985dd3d874699c0baa702a4f877531e742c9aa93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7705645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rattray, A.J. (Columbia University College of Physicians and Surgeons, New York, NY.)</creatorcontrib><creatorcontrib>Symington, L.S</creatorcontrib><title>Multiple pathways for homologous recombination in Saccharomyces cerevisiae</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>The genes in the RAD52 epistasis group of Saccharomyces cerevisiae are necessary for most mitotic and meiotic recombination events. Using an intrachromosomal inverted-repeat assay, we previously demonstrated that mitotic recombination of this substrate is dependent upon the RAD52 gene. In the present study the requirement for other genes in this epistasis group for recombination of inverted repeats has been analyzed, and double and triple mutant strains were examined for their epistatic relationships. The majority of recombination events are mediated by a RAD51-dependent pathway, where the RAD54, RAD55 and RAD57 genes function downstream of RAD51. Cells mutated in RAD55 or RAD57 as well as double mutants are cold-sensitive for inverted-repeat recombination, whereas a rad51 rad55 rad57 triple mutant is not. The RAD1 gene is not required for inverted-repeat recombination but is able to process spontaneous DNA lesions to produce recombinant products in the absence of RAD51. Furthermore, there is still considerably more recombination in rad1 rad51 mutants than in rad52 mutants, indicating the presence of another, as yet unidentified, recombination pathway</description><subject>ADN</subject><subject>Chromosome Inversion</subject><subject>Crossing Over, Genetic</subject><subject>DNA Damage</subject><subject>Epistasis, Genetic</subject><subject>Gamma Rays - adverse effects</subject><subject>GENE</subject><subject>Gene Conversion</subject><subject>GENES</subject><subject>Genes, Fungal - genetics</subject><subject>Genetics</subject><subject>INTERACCION DE GENES</subject><subject>INTERACTION GENIQUE</subject><subject>Investigations</subject><subject>MITOSE</subject><subject>MITOSIS</subject><subject>Mitosis - genetics</subject><subject>Models, Genetic</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>Radiation Tolerance - genetics</subject><subject>RECOMBINACION</subject><subject>RECOMBINAISON</subject><subject>Recombination, Genetic - genetics</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Yeast</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAURS0EKsPADwAJKUKCXaZ-8Ve8QUIVLaAiFqVr643jTFwl8WAnjebfYzRDVVh5cY-P3tUl5DXQDVDNzndudJO36RyY3sCGiydkBZqzspIMnpIVpSBLqRg8Jy9SuqOUSi3qM3KmFBWSixX59n3uJ7_vXbHHqVvwkIo2xKILQ-jDLsypiM6GYetHnHwYCz8WN2hthzEMB-tSYV109z55dC_Jsxb75F6d3jW5vfz88-JLef3j6uvFp-vSCqmmklXAqlo72dBcoea0haYVjeW6Fk3DmlpxqbWlW0RFK-RtrZRg4BSvrEbUbE0-Hr37eTu4xrpxitibffQDxoMJ6M2_yeg7swv3BioqGa-y4MNJEMOv2aXJDD5Z1_c4utzYgFRUc8Ey-O4_8C7McczlTAUcoGbAMwRHyMaQUnTtwyVAzZ-VzN-VTF7JgMnmNXn7uMLDj9MsOX9_zDu_6xYfnUkD9n2mwSzL8sjz5si1GAzuok_m9kYLlq9X7DddhaZd</recordid><startdate>199501</startdate><enddate>199501</enddate><creator>Rattray, A.J. (Columbia University College of Physicians and Surgeons, New York, NY.)</creator><creator>Symington, L.S</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>199501</creationdate><title>Multiple pathways for homologous recombination in Saccharomyces cerevisiae</title><author>Rattray, A.J. (Columbia University College of Physicians and Surgeons, New York, NY.) ; Symington, L.S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-3213289e6d0093840f1df5dc4985dd3d874699c0baa702a4f877531e742c9aa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>ADN</topic><topic>Chromosome Inversion</topic><topic>Crossing Over, Genetic</topic><topic>DNA Damage</topic><topic>Epistasis, Genetic</topic><topic>Gamma Rays - adverse effects</topic><topic>GENE</topic><topic>Gene Conversion</topic><topic>GENES</topic><topic>Genes, Fungal - genetics</topic><topic>Genetics</topic><topic>INTERACCION DE GENES</topic><topic>INTERACTION GENIQUE</topic><topic>Investigations</topic><topic>MITOSE</topic><topic>MITOSIS</topic><topic>Mitosis - genetics</topic><topic>Models, Genetic</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>Radiation Tolerance - genetics</topic><topic>RECOMBINACION</topic><topic>RECOMBINAISON</topic><topic>Recombination, Genetic - genetics</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rattray, A.J. (Columbia University College of Physicians and Surgeons, New York, NY.)</creatorcontrib><creatorcontrib>Symington, L.S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rattray, A.J. (Columbia University College of Physicians and Surgeons, New York, NY.)</au><au>Symington, L.S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple pathways for homologous recombination in Saccharomyces cerevisiae</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>1995-01</date><risdate>1995</risdate><volume>139</volume><issue>1</issue><spage>45</spage><epage>56</epage><pages>45-56</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>The genes in the RAD52 epistasis group of Saccharomyces cerevisiae are necessary for most mitotic and meiotic recombination events. Using an intrachromosomal inverted-repeat assay, we previously demonstrated that mitotic recombination of this substrate is dependent upon the RAD52 gene. In the present study the requirement for other genes in this epistasis group for recombination of inverted repeats has been analyzed, and double and triple mutant strains were examined for their epistatic relationships. The majority of recombination events are mediated by a RAD51-dependent pathway, where the RAD54, RAD55 and RAD57 genes function downstream of RAD51. Cells mutated in RAD55 or RAD57 as well as double mutants are cold-sensitive for inverted-repeat recombination, whereas a rad51 rad55 rad57 triple mutant is not. The RAD1 gene is not required for inverted-repeat recombination but is able to process spontaneous DNA lesions to produce recombinant products in the absence of RAD51. Furthermore, there is still considerably more recombination in rad1 rad51 mutants than in rad52 mutants, indicating the presence of another, as yet unidentified, recombination pathway</abstract><cop>United States</cop><pub>Genetics Soc America</pub><pmid>7705645</pmid><doi>10.1093/genetics/139.1.45</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-6731 |
ispartof | Genetics (Austin), 1995-01, Vol.139 (1), p.45-56 |
issn | 0016-6731 1943-2631 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1206342 |
source | Freely Accessible Journals; Alma/SFX Local Collection |
subjects | ADN Chromosome Inversion Crossing Over, Genetic DNA Damage Epistasis, Genetic Gamma Rays - adverse effects GENE Gene Conversion GENES Genes, Fungal - genetics Genetics INTERACCION DE GENES INTERACTION GENIQUE Investigations MITOSE MITOSIS Mitosis - genetics Models, Genetic MUTANT MUTANTES Radiation Tolerance - genetics RECOMBINACION RECOMBINAISON Recombination, Genetic - genetics Repetitive Sequences, Nucleic Acid SACCHAROMYCES CEREVISIAE Saccharomyces cerevisiae - genetics Yeast |
title | Multiple pathways for homologous recombination in Saccharomyces cerevisiae |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20pathways%20for%20homologous%20recombination%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Genetics%20(Austin)&rft.au=Rattray,%20A.J.%20(Columbia%20University%20College%20of%20Physicians%20and%20Surgeons,%20New%20York,%20NY.)&rft.date=1995-01&rft.volume=139&rft.issue=1&rft.spage=45&rft.epage=56&rft.pages=45-56&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1093/genetics/139.1.45&rft_dat=%3Cproquest_pubme%3E16709453%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-3213289e6d0093840f1df5dc4985dd3d874699c0baa702a4f877531e742c9aa93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=214118314&rft_id=info:pmid/7705645&rfr_iscdi=true |