Loading…

Multiple pathways for homologous recombination in Saccharomyces cerevisiae

The genes in the RAD52 epistasis group of Saccharomyces cerevisiae are necessary for most mitotic and meiotic recombination events. Using an intrachromosomal inverted-repeat assay, we previously demonstrated that mitotic recombination of this substrate is dependent upon the RAD52 gene. In the presen...

Full description

Saved in:
Bibliographic Details
Published in:Genetics (Austin) 1995-01, Vol.139 (1), p.45-56
Main Authors: Rattray, A.J. (Columbia University College of Physicians and Surgeons, New York, NY.), Symington, L.S
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c567t-3213289e6d0093840f1df5dc4985dd3d874699c0baa702a4f877531e742c9aa93
cites
container_end_page 56
container_issue 1
container_start_page 45
container_title Genetics (Austin)
container_volume 139
creator Rattray, A.J. (Columbia University College of Physicians and Surgeons, New York, NY.)
Symington, L.S
description The genes in the RAD52 epistasis group of Saccharomyces cerevisiae are necessary for most mitotic and meiotic recombination events. Using an intrachromosomal inverted-repeat assay, we previously demonstrated that mitotic recombination of this substrate is dependent upon the RAD52 gene. In the present study the requirement for other genes in this epistasis group for recombination of inverted repeats has been analyzed, and double and triple mutant strains were examined for their epistatic relationships. The majority of recombination events are mediated by a RAD51-dependent pathway, where the RAD54, RAD55 and RAD57 genes function downstream of RAD51. Cells mutated in RAD55 or RAD57 as well as double mutants are cold-sensitive for inverted-repeat recombination, whereas a rad51 rad55 rad57 triple mutant is not. The RAD1 gene is not required for inverted-repeat recombination but is able to process spontaneous DNA lesions to produce recombinant products in the absence of RAD51. Furthermore, there is still considerably more recombination in rad1 rad51 mutants than in rad52 mutants, indicating the presence of another, as yet unidentified, recombination pathway
doi_str_mv 10.1093/genetics/139.1.45
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1206342</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>16709453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c567t-3213289e6d0093840f1df5dc4985dd3d874699c0baa702a4f877531e742c9aa93</originalsourceid><addsrcrecordid>eNpdkU1v1DAURS0EKsPADwAJKUKCXaZ-8Ve8QUIVLaAiFqVr643jTFwl8WAnjebfYzRDVVh5cY-P3tUl5DXQDVDNzndudJO36RyY3sCGiydkBZqzspIMnpIVpSBLqRg8Jy9SuqOUSi3qM3KmFBWSixX59n3uJ7_vXbHHqVvwkIo2xKILQ-jDLsypiM6GYetHnHwYCz8WN2hthzEMB-tSYV109z55dC_Jsxb75F6d3jW5vfz88-JLef3j6uvFp-vSCqmmklXAqlo72dBcoea0haYVjeW6Fk3DmlpxqbWlW0RFK-RtrZRg4BSvrEbUbE0-Hr37eTu4xrpxitibffQDxoMJ6M2_yeg7swv3BioqGa-y4MNJEMOv2aXJDD5Z1_c4utzYgFRUc8Ey-O4_8C7McczlTAUcoGbAMwRHyMaQUnTtwyVAzZ-VzN-VTF7JgMnmNXn7uMLDj9MsOX9_zDu_6xYfnUkD9n2mwSzL8sjz5si1GAzuok_m9kYLlq9X7DddhaZd</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214118314</pqid></control><display><type>article</type><title>Multiple pathways for homologous recombination in Saccharomyces cerevisiae</title><source>Freely Accessible Journals</source><source>Alma/SFX Local Collection</source><creator>Rattray, A.J. (Columbia University College of Physicians and Surgeons, New York, NY.) ; Symington, L.S</creator><creatorcontrib>Rattray, A.J. (Columbia University College of Physicians and Surgeons, New York, NY.) ; Symington, L.S</creatorcontrib><description>The genes in the RAD52 epistasis group of Saccharomyces cerevisiae are necessary for most mitotic and meiotic recombination events. Using an intrachromosomal inverted-repeat assay, we previously demonstrated that mitotic recombination of this substrate is dependent upon the RAD52 gene. In the present study the requirement for other genes in this epistasis group for recombination of inverted repeats has been analyzed, and double and triple mutant strains were examined for their epistatic relationships. The majority of recombination events are mediated by a RAD51-dependent pathway, where the RAD54, RAD55 and RAD57 genes function downstream of RAD51. Cells mutated in RAD55 or RAD57 as well as double mutants are cold-sensitive for inverted-repeat recombination, whereas a rad51 rad55 rad57 triple mutant is not. The RAD1 gene is not required for inverted-repeat recombination but is able to process spontaneous DNA lesions to produce recombinant products in the absence of RAD51. Furthermore, there is still considerably more recombination in rad1 rad51 mutants than in rad52 mutants, indicating the presence of another, as yet unidentified, recombination pathway</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1093/genetics/139.1.45</identifier><identifier>PMID: 7705645</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Soc America</publisher><subject>ADN ; Chromosome Inversion ; Crossing Over, Genetic ; DNA Damage ; Epistasis, Genetic ; Gamma Rays - adverse effects ; GENE ; Gene Conversion ; GENES ; Genes, Fungal - genetics ; Genetics ; INTERACCION DE GENES ; INTERACTION GENIQUE ; Investigations ; MITOSE ; MITOSIS ; Mitosis - genetics ; Models, Genetic ; MUTANT ; MUTANTES ; Radiation Tolerance - genetics ; RECOMBINACION ; RECOMBINAISON ; Recombination, Genetic - genetics ; Repetitive Sequences, Nucleic Acid ; SACCHAROMYCES CEREVISIAE ; Saccharomyces cerevisiae - genetics ; Yeast</subject><ispartof>Genetics (Austin), 1995-01, Vol.139 (1), p.45-56</ispartof><rights>Copyright Genetics Society of America Jan 1995</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c567t-3213289e6d0093840f1df5dc4985dd3d874699c0baa702a4f877531e742c9aa93</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7705645$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rattray, A.J. (Columbia University College of Physicians and Surgeons, New York, NY.)</creatorcontrib><creatorcontrib>Symington, L.S</creatorcontrib><title>Multiple pathways for homologous recombination in Saccharomyces cerevisiae</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>The genes in the RAD52 epistasis group of Saccharomyces cerevisiae are necessary for most mitotic and meiotic recombination events. Using an intrachromosomal inverted-repeat assay, we previously demonstrated that mitotic recombination of this substrate is dependent upon the RAD52 gene. In the present study the requirement for other genes in this epistasis group for recombination of inverted repeats has been analyzed, and double and triple mutant strains were examined for their epistatic relationships. The majority of recombination events are mediated by a RAD51-dependent pathway, where the RAD54, RAD55 and RAD57 genes function downstream of RAD51. Cells mutated in RAD55 or RAD57 as well as double mutants are cold-sensitive for inverted-repeat recombination, whereas a rad51 rad55 rad57 triple mutant is not. The RAD1 gene is not required for inverted-repeat recombination but is able to process spontaneous DNA lesions to produce recombinant products in the absence of RAD51. Furthermore, there is still considerably more recombination in rad1 rad51 mutants than in rad52 mutants, indicating the presence of another, as yet unidentified, recombination pathway</description><subject>ADN</subject><subject>Chromosome Inversion</subject><subject>Crossing Over, Genetic</subject><subject>DNA Damage</subject><subject>Epistasis, Genetic</subject><subject>Gamma Rays - adverse effects</subject><subject>GENE</subject><subject>Gene Conversion</subject><subject>GENES</subject><subject>Genes, Fungal - genetics</subject><subject>Genetics</subject><subject>INTERACCION DE GENES</subject><subject>INTERACTION GENIQUE</subject><subject>Investigations</subject><subject>MITOSE</subject><subject>MITOSIS</subject><subject>Mitosis - genetics</subject><subject>Models, Genetic</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>Radiation Tolerance - genetics</subject><subject>RECOMBINACION</subject><subject>RECOMBINAISON</subject><subject>Recombination, Genetic - genetics</subject><subject>Repetitive Sequences, Nucleic Acid</subject><subject>SACCHAROMYCES CEREVISIAE</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Yeast</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1995</creationdate><recordtype>article</recordtype><recordid>eNpdkU1v1DAURS0EKsPADwAJKUKCXaZ-8Ve8QUIVLaAiFqVr643jTFwl8WAnjebfYzRDVVh5cY-P3tUl5DXQDVDNzndudJO36RyY3sCGiydkBZqzspIMnpIVpSBLqRg8Jy9SuqOUSi3qM3KmFBWSixX59n3uJ7_vXbHHqVvwkIo2xKILQ-jDLsypiM6GYetHnHwYCz8WN2hthzEMB-tSYV109z55dC_Jsxb75F6d3jW5vfz88-JLef3j6uvFp-vSCqmmklXAqlo72dBcoea0haYVjeW6Fk3DmlpxqbWlW0RFK-RtrZRg4BSvrEbUbE0-Hr37eTu4xrpxitibffQDxoMJ6M2_yeg7swv3BioqGa-y4MNJEMOv2aXJDD5Z1_c4utzYgFRUc8Ey-O4_8C7McczlTAUcoGbAMwRHyMaQUnTtwyVAzZ-VzN-VTF7JgMnmNXn7uMLDj9MsOX9_zDu_6xYfnUkD9n2mwSzL8sjz5si1GAzuok_m9kYLlq9X7DddhaZd</recordid><startdate>199501</startdate><enddate>199501</enddate><creator>Rattray, A.J. (Columbia University College of Physicians and Surgeons, New York, NY.)</creator><creator>Symington, L.S</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>199501</creationdate><title>Multiple pathways for homologous recombination in Saccharomyces cerevisiae</title><author>Rattray, A.J. (Columbia University College of Physicians and Surgeons, New York, NY.) ; Symington, L.S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c567t-3213289e6d0093840f1df5dc4985dd3d874699c0baa702a4f877531e742c9aa93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1995</creationdate><topic>ADN</topic><topic>Chromosome Inversion</topic><topic>Crossing Over, Genetic</topic><topic>DNA Damage</topic><topic>Epistasis, Genetic</topic><topic>Gamma Rays - adverse effects</topic><topic>GENE</topic><topic>Gene Conversion</topic><topic>GENES</topic><topic>Genes, Fungal - genetics</topic><topic>Genetics</topic><topic>INTERACCION DE GENES</topic><topic>INTERACTION GENIQUE</topic><topic>Investigations</topic><topic>MITOSE</topic><topic>MITOSIS</topic><topic>Mitosis - genetics</topic><topic>Models, Genetic</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>Radiation Tolerance - genetics</topic><topic>RECOMBINACION</topic><topic>RECOMBINAISON</topic><topic>Recombination, Genetic - genetics</topic><topic>Repetitive Sequences, Nucleic Acid</topic><topic>SACCHAROMYCES CEREVISIAE</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rattray, A.J. (Columbia University College of Physicians and Surgeons, New York, NY.)</creatorcontrib><creatorcontrib>Symington, L.S</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rattray, A.J. (Columbia University College of Physicians and Surgeons, New York, NY.)</au><au>Symington, L.S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple pathways for homologous recombination in Saccharomyces cerevisiae</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>1995-01</date><risdate>1995</risdate><volume>139</volume><issue>1</issue><spage>45</spage><epage>56</epage><pages>45-56</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>The genes in the RAD52 epistasis group of Saccharomyces cerevisiae are necessary for most mitotic and meiotic recombination events. Using an intrachromosomal inverted-repeat assay, we previously demonstrated that mitotic recombination of this substrate is dependent upon the RAD52 gene. In the present study the requirement for other genes in this epistasis group for recombination of inverted repeats has been analyzed, and double and triple mutant strains were examined for their epistatic relationships. The majority of recombination events are mediated by a RAD51-dependent pathway, where the RAD54, RAD55 and RAD57 genes function downstream of RAD51. Cells mutated in RAD55 or RAD57 as well as double mutants are cold-sensitive for inverted-repeat recombination, whereas a rad51 rad55 rad57 triple mutant is not. The RAD1 gene is not required for inverted-repeat recombination but is able to process spontaneous DNA lesions to produce recombinant products in the absence of RAD51. Furthermore, there is still considerably more recombination in rad1 rad51 mutants than in rad52 mutants, indicating the presence of another, as yet unidentified, recombination pathway</abstract><cop>United States</cop><pub>Genetics Soc America</pub><pmid>7705645</pmid><doi>10.1093/genetics/139.1.45</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-6731
ispartof Genetics (Austin), 1995-01, Vol.139 (1), p.45-56
issn 0016-6731
1943-2631
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1206342
source Freely Accessible Journals; Alma/SFX Local Collection
subjects ADN
Chromosome Inversion
Crossing Over, Genetic
DNA Damage
Epistasis, Genetic
Gamma Rays - adverse effects
GENE
Gene Conversion
GENES
Genes, Fungal - genetics
Genetics
INTERACCION DE GENES
INTERACTION GENIQUE
Investigations
MITOSE
MITOSIS
Mitosis - genetics
Models, Genetic
MUTANT
MUTANTES
Radiation Tolerance - genetics
RECOMBINACION
RECOMBINAISON
Recombination, Genetic - genetics
Repetitive Sequences, Nucleic Acid
SACCHAROMYCES CEREVISIAE
Saccharomyces cerevisiae - genetics
Yeast
title Multiple pathways for homologous recombination in Saccharomyces cerevisiae
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20pathways%20for%20homologous%20recombination%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Genetics%20(Austin)&rft.au=Rattray,%20A.J.%20(Columbia%20University%20College%20of%20Physicians%20and%20Surgeons,%20New%20York,%20NY.)&rft.date=1995-01&rft.volume=139&rft.issue=1&rft.spage=45&rft.epage=56&rft.pages=45-56&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1093/genetics/139.1.45&rft_dat=%3Cproquest_pubme%3E16709453%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c567t-3213289e6d0093840f1df5dc4985dd3d874699c0baa702a4f877531e742c9aa93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=214118314&rft_id=info:pmid/7705645&rfr_iscdi=true