Loading…

Reconstitution of the hexose phosphate translocator from the envelope membranes of wheat endosperm amyloplasts

Amyloplasts were isolated and purified from wheat endosperm and the envelope membranes reconstituted into liposomes. Envelope membranes were solubilized in n-octyl beta-D-glucopyranoside and mixed with liposomes supplemented with 5.6 mol% cholesterol to produce proteoliposomes of defined size, which...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical journal 1996-11, Vol.319 ( Pt 3) (3), p.717-723
Main Authors: Tetlow, I J, Bowsher, C G, Emes, M J
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Amyloplasts were isolated and purified from wheat endosperm and the envelope membranes reconstituted into liposomes. Envelope membranes were solubilized in n-octyl beta-D-glucopyranoside and mixed with liposomes supplemented with 5.6 mol% cholesterol to produce proteoliposomes of defined size, which showed negligible leakage of internal substrates. Transport experiments with proteoliposomes revealed a counter-exchange of glucose 1-phosphate (Glc1P), glucose 6-phosphate (Glc6P), inorganic phosphate (Pi), 3-phosphoglycerate and dihydroxyacetone phosphate. The Glc1P/Pi counter-exchange reaction exhibited an apparent K(m) for Glc1P of 0.4 mM. Glc6P was a competitive inhibitor of Glc1P transport (Ki 0.8 mM), and the two hexose phosphates could exchange with each other, indicating the operation of a single carrier protein. Glc1P/Pi antiport in proteoliposomes showed an exchange stoichiometry at pH 8.0 of 1 mol of phosphate transported per mol of sugar phosphate.
ISSN:0264-6021
1470-8728
DOI:10.1042/bj3190717