Loading…
Design of kallidin-releasing tissue kallikrein inhibitors based on the specificities of the enzyme's binding subsites
The tissue kallikrein inhibitors reported in the present work were derived by selectively replacing residues in Nalpha-substituted arginine- or phenylalanine-pNA (where pNA is p-nitroanilide), and in peptide substrates for these enzymes. Phenylacetyl-Arg-pNA was found to be an efficient inhibitor of...
Saved in:
Published in: | Biochemical journal 1997-04, Vol.323 ( Pt 1) (1), p.167-171 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The tissue kallikrein inhibitors reported in the present work were derived by selectively replacing residues in Nalpha-substituted arginine- or phenylalanine-pNA (where pNA is p-nitroanilide), and in peptide substrates for these enzymes. Phenylacetyl-Arg-pNA was found to be an efficient inhibitor of human tissue kallikrein (Ki 0.4 microM) and was neither a substrate nor an inhibitor of plasma kallikrein. The peptide inhibitors having phenylalanine as the P1 residue behaved as specific inhibitors for kallidin-releasing tissue kallikreins, while plasma kallikrein showed high affinity for inhibitors containing (p-nitro)phenylalanine at the same position. The Ki value of the most potent inhibitor developed, Abz-Phe-Arg-Arg-Pro-Arg-EDDnp [where Abz is o-aminobenzoyl and EDDnp is N-(2,4-dinitrophenyl)-ethylenediamine], was 0.08 microM for human tissue kallikrein. Progress curve analyses of the inhibition of human tissue kallikrein by benzoyl-Arg-pNA and phenylacetyl-Phe-Ser-Arg-EDDnp indicated a single-step mechanism for reversible formation of the enzyme-inhibitor complex. |
---|---|
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/bj3230167 |