Loading…
Zeta, a novel class of glutathione transferases in a range of species from plants to humans
Sequence alignment and phylogenetic analysis has identified a new subgroup of glutathione S-transferase (GST)-like proteins from a range of species extending from plants to humans. This group has been termed the Zeta class. An atomic model of the N-terminal domain suggests that the members of the Ze...
Saved in:
Published in: | Biochemical journal 1997-12, Vol.328 (3), p.929-935 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Sequence alignment and phylogenetic analysis has identified a new subgroup of glutathione S-transferase (GST)-like proteins from a range of species extending from plants to humans. This group has been termed the Zeta class. An atomic model of the N-terminal domain suggests that the members of the Zeta class have a similar structure to that of other GSTs, binding glutathione in a similar orientation in the G site. Recombinant human GSTZ1-1 has been expressed in Escherichia coli and characterized. The protein is a dimer composed of 24.2 kDa subunits and has minimal glutathione-conjugating activity with ethacrynic acid and 7-chloro-4-nitrobenz-2-oxa-1, 3-diazole. Although low in comparison with other GSTs, GSTZ1-1 has glutathione peroxidase activity with t-butyl and cumene hydroperoxides. The members of the Zeta class have been conserved over a long evolutionary period, suggesting that they might have a role in the metabolism of a compound that is common in many living cells. |
---|---|
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/bj3280929 |