Loading…
Structure of the human histamine H1 receptor gene
Histamine H1 receptor expression has been reported to change in disorders such as allergic rhinitis, autoimmune myocarditis, rheumatoid arthritis and atherosclerosis. Here we report the isolation and characterization of genomic clones containing the 5' flanking (regulatory) region of the human...
Saved in:
Published in: | Biochemical journal 1998-11, Vol.335 ( Pt 3) (3), p.663-670 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Histamine H1 receptor expression has been reported to change in disorders such as allergic rhinitis, autoimmune myocarditis, rheumatoid arthritis and atherosclerosis. Here we report the isolation and characterization of genomic clones containing the 5' flanking (regulatory) region of the human histamine H1 receptor gene. An intron of approx. 5.8 kb was identified in the 5' untranslated region, which suggests that an entire subfamily of G-protein-coupled receptors may contain an intron immediately upstream of the start codon. The transcription initiation site was mapped by 5' rapid amplification of cDNA ends to a region 6.2 kb upstream of the start codon. Immediately upstream of the transcription start site a fragment of 1.85 kb was identified that showed promoter activity when placed upstream of a luciferase reporter gene and transiently transfected into cells expressing the histamine H1 receptor. The promoter sequence shares a number of characteristics with the promoter sequences of other G-protein-coupled receptor encoding genes, including binding sites for several transcription factors, and the absence of TATA and CAAT sequences at the appropriate locations. The promoter sequence described here differs from that reported previously [Fukui, Fujimoto, Mizuguchi, Sakamoto, Horio, Takai, Yamada and Ito (1994) Biochem. Biophys. Res. Commun. 201, 894-901] because the reported genomic clone was chimaeric. Furthermore our study provides evidence that the 3' untranslated region of the H1 receptor mRNA is much longer than previously accepted. Together, these findings provide a complete view of the structure of the human histamine H1 receptor gene. Both the coding region of the H1 receptor gene and its promoter region were independently mapped to chromosome 3p25. |
---|---|
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/bj3350663 |