Loading…
Evidence for secretion-like coupling involving pp60src in the activation and maintenance of store-mediated Ca2+ entry in mouse pancreatic acinar cells
Store-mediated Ca2+ entry (SMCE) is one of the main pathways for Ca2+ influx in non-excitable cells. Recent studies favour a secretion-like coupling mechanism to explain SMCE, where Ca2+ entry is mediated by an interaction of the endoplasmic reticulum (ER) with the plasma membrane (PM) and is modula...
Saved in:
Published in: | Biochemical journal 2003-02, Vol.370 (Pt 1), p.255-263 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Store-mediated Ca2+ entry (SMCE) is one of the main pathways for Ca2+ influx in non-excitable cells. Recent studies favour a secretion-like coupling mechanism to explain SMCE, where Ca2+ entry is mediated by an interaction of the endoplasmic reticulum (ER) with the plasma membrane (PM) and is modulated by the actin cytoskeleton. To explore this possibility further we have now investigated the role of the actin cytoskeleton in the activation and maintenance of SMCE in pancreatic acinar cells, a more specialized secretory cell type which might be an ideal cellular model to investigate further the properties of the secretion-like coupling model. In these cells, the cytoskeletal disrupters cytochalasin D and latrunculin A inhibited both the activation and maintenance of SMCE. In addition, stabilization of a cortical actin barrier by jasplakinolide prevented the activation, but not the maintenance, of SMCE, suggesting that, as for secretion, the actin cytoskeleton plays a double role in SMCE as a negative modulator of the interaction between the ER and PM, but is also required for this mechanism, since the cytoskeleton disrupters impaired Ca2+ entry. Finally, depletion of the intracellular Ca2+ stores induces cytoskeletal association and activation of pp60(src), which is independent on Ca2+ entry. pp60(src) activation requires the integrity of the actin cytoskeleton and participates in the initial phase of the activation of SMCE in pancreatic acinar cells. |
---|---|
ISSN: | 0264-6021 1470-8728 |
DOI: | 10.1042/bj20021505 |