Loading…
Zero-current potentials in a large membrane channel: a simple theory accounts for complex behavior
Flow of ions through large channels is complex because both cations and anions can penetrate and multiple ions can be in the channel at the same time. A modification of the fixed-charge membrane theory of Teorell was reported (Peng, S., E. Blachly-Dyson, M. Forte, and M. Colombini. 1992. Biophys. J....
Saved in:
Published in: | Biophysical journal 1993-09, Vol.65 (3), p.1093-1100 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c557t-de5f8add31954b9c99a9af38b064d77a30e165e243062e3939a338b26c5ab44e3 |
---|---|
cites | |
container_end_page | 1100 |
container_issue | 3 |
container_start_page | 1093 |
container_title | Biophysical journal |
container_volume | 65 |
creator | Zambrowicz, E.B. Colombini, M. |
description | Flow of ions through large channels is complex because both cations and anions can penetrate and multiple ions can be in the channel at the same time. A modification of the fixed-charge membrane theory of Teorell was reported (Peng, S., E. Blachly-Dyson, M. Forte, and M. Colombini. 1992. Biophys. J. 62:123–135) in which the channel is divided into two compartments: a relatively charged cylindrical shell of solution adjacent to the wall of the pore and a relatively neutral central cylinder of solution. The zero-current (reversal) potential results in current flow in opposite directions in these two compartments. This description accounted rather well for the observed reversal potential changes following site-directed mutations. Here we report the results of systematic tests of this simple theory with the mitochondrial channel, VDAC (isolated from Neurospora crassa), reconstituted into planar phospholipid membranes. The variation of the observed reversal potential with transmembrane activity ratio, ionic strength, ion mobility ratio, and net charge on the wall of the pore are accounted for reasonably well. The Goldman-Hodgkin-Katz theory fails to account for the observations. |
doi_str_mv | 10.1016/S0006-3495(93)81148-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1225826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349593811482</els_id><sourcerecordid>76100749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-de5f8add31954b9c99a9af38b064d77a30e165e243062e3939a338b26c5ab44e3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS1EVaaFn1DJC4RgEXr9TMwChKoClSp1AWzYWI5z0zFK4sFORvTf4-mMRrBidRfnu-c-DiEXDN4yYPryKwDoSkijXhvxpmFMNhV_QlZMSV4BNPopWR2RZ-Qs558AjCtgp-S01kZq3axI-wNTrPySEk4z3cS5lOCGTMNEHR1cukc64tgmNyH1azdNOLwrSg7jZkA6rzGmB-q8j8s0Z9rHRH3cSb9pi2u3DTE9Jyd9ccQXh3pOvn-6_nb1pbq9-3xz9fG28krVc9Wh6hvXdYIZJVvjjXHG9aJpQcuurp0AZFohlwI0R2GEcaKoXHvlWilRnJP3e9_N0o7Y-XJJcoPdpDC69GCjC_ZfZQprex-3lnGuGq6LwauDQYq_FsyzHUP2OAzl9rhkW2sGUEtTQLUHfYo5J-yPQxjYXTj2MRy7-7w1wj6GY3npu_h7w2PXIY2ivzzoLns39OXpPuQjJhkY1kDBPuwxLN_cBkw2-4CTxy4k9LPtYvjPIn8AayCtkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76100749</pqid></control><display><type>article</type><title>Zero-current potentials in a large membrane channel: a simple theory accounts for complex behavior</title><source>Open Access: PubMed Central</source><creator>Zambrowicz, E.B. ; Colombini, M.</creator><creatorcontrib>Zambrowicz, E.B. ; Colombini, M.</creatorcontrib><description>Flow of ions through large channels is complex because both cations and anions can penetrate and multiple ions can be in the channel at the same time. A modification of the fixed-charge membrane theory of Teorell was reported (Peng, S., E. Blachly-Dyson, M. Forte, and M. Colombini. 1992. Biophys. J. 62:123–135) in which the channel is divided into two compartments: a relatively charged cylindrical shell of solution adjacent to the wall of the pore and a relatively neutral central cylinder of solution. The zero-current (reversal) potential results in current flow in opposite directions in these two compartments. This description accounted rather well for the observed reversal potential changes following site-directed mutations. Here we report the results of systematic tests of this simple theory with the mitochondrial channel, VDAC (isolated from Neurospora crassa), reconstituted into planar phospholipid membranes. The variation of the observed reversal potential with transmembrane activity ratio, ionic strength, ion mobility ratio, and net charge on the wall of the pore are accounted for reasonably well. The Goldman-Hodgkin-Katz theory fails to account for the observations.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(93)81148-2</identifier><identifier>PMID: 7694668</identifier><identifier>CODEN: BIOJAU</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>Artificial membranes and reconstituted systems ; Biological and medical sciences ; Biophysical Phenomena ; Biophysics ; Fundamental and applied biological sciences. Psychology ; Ion Channels - metabolism ; Membrane physicochemistry ; Membrane Potentials ; Membrane Proteins - metabolism ; Mitochondria - metabolism ; Models, Biological ; Molecular biophysics ; Neurospora crassa - metabolism ; Osmolar Concentration ; Porins ; Salts ; Voltage-Dependent Anion Channels</subject><ispartof>Biophysical journal, 1993-09, Vol.65 (3), p.1093-1100</ispartof><rights>1993 The Biophysical Society</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-de5f8add31954b9c99a9af38b064d77a30e165e243062e3939a338b26c5ab44e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1225826/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1225826/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4109180$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7694668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zambrowicz, E.B.</creatorcontrib><creatorcontrib>Colombini, M.</creatorcontrib><title>Zero-current potentials in a large membrane channel: a simple theory accounts for complex behavior</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Flow of ions through large channels is complex because both cations and anions can penetrate and multiple ions can be in the channel at the same time. A modification of the fixed-charge membrane theory of Teorell was reported (Peng, S., E. Blachly-Dyson, M. Forte, and M. Colombini. 1992. Biophys. J. 62:123–135) in which the channel is divided into two compartments: a relatively charged cylindrical shell of solution adjacent to the wall of the pore and a relatively neutral central cylinder of solution. The zero-current (reversal) potential results in current flow in opposite directions in these two compartments. This description accounted rather well for the observed reversal potential changes following site-directed mutations. Here we report the results of systematic tests of this simple theory with the mitochondrial channel, VDAC (isolated from Neurospora crassa), reconstituted into planar phospholipid membranes. The variation of the observed reversal potential with transmembrane activity ratio, ionic strength, ion mobility ratio, and net charge on the wall of the pore are accounted for reasonably well. The Goldman-Hodgkin-Katz theory fails to account for the observations.</description><subject>Artificial membranes and reconstituted systems</subject><subject>Biological and medical sciences</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Ion Channels - metabolism</subject><subject>Membrane physicochemistry</subject><subject>Membrane Potentials</subject><subject>Membrane Proteins - metabolism</subject><subject>Mitochondria - metabolism</subject><subject>Models, Biological</subject><subject>Molecular biophysics</subject><subject>Neurospora crassa - metabolism</subject><subject>Osmolar Concentration</subject><subject>Porins</subject><subject>Salts</subject><subject>Voltage-Dependent Anion Channels</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAUhS1EVaaFn1DJC4RgEXr9TMwChKoClSp1AWzYWI5z0zFK4sFORvTf4-mMRrBidRfnu-c-DiEXDN4yYPryKwDoSkijXhvxpmFMNhV_QlZMSV4BNPopWR2RZ-Qs558AjCtgp-S01kZq3axI-wNTrPySEk4z3cS5lOCGTMNEHR1cukc64tgmNyH1azdNOLwrSg7jZkA6rzGmB-q8j8s0Z9rHRH3cSb9pi2u3DTE9Jyd9ccQXh3pOvn-6_nb1pbq9-3xz9fG28krVc9Wh6hvXdYIZJVvjjXHG9aJpQcuurp0AZFohlwI0R2GEcaKoXHvlWilRnJP3e9_N0o7Y-XJJcoPdpDC69GCjC_ZfZQprex-3lnGuGq6LwauDQYq_FsyzHUP2OAzl9rhkW2sGUEtTQLUHfYo5J-yPQxjYXTj2MRy7-7w1wj6GY3npu_h7w2PXIY2ivzzoLns39OXpPuQjJhkY1kDBPuwxLN_cBkw2-4CTxy4k9LPtYvjPIn8AayCtkw</recordid><startdate>19930901</startdate><enddate>19930901</enddate><creator>Zambrowicz, E.B.</creator><creator>Colombini, M.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19930901</creationdate><title>Zero-current potentials in a large membrane channel: a simple theory accounts for complex behavior</title><author>Zambrowicz, E.B. ; Colombini, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-de5f8add31954b9c99a9af38b064d77a30e165e243062e3939a338b26c5ab44e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Artificial membranes and reconstituted systems</topic><topic>Biological and medical sciences</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Ion Channels - metabolism</topic><topic>Membrane physicochemistry</topic><topic>Membrane Potentials</topic><topic>Membrane Proteins - metabolism</topic><topic>Mitochondria - metabolism</topic><topic>Models, Biological</topic><topic>Molecular biophysics</topic><topic>Neurospora crassa - metabolism</topic><topic>Osmolar Concentration</topic><topic>Porins</topic><topic>Salts</topic><topic>Voltage-Dependent Anion Channels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zambrowicz, E.B.</creatorcontrib><creatorcontrib>Colombini, M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zambrowicz, E.B.</au><au>Colombini, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero-current potentials in a large membrane channel: a simple theory accounts for complex behavior</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1993-09-01</date><risdate>1993</risdate><volume>65</volume><issue>3</issue><spage>1093</spage><epage>1100</epage><pages>1093-1100</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><coden>BIOJAU</coden><abstract>Flow of ions through large channels is complex because both cations and anions can penetrate and multiple ions can be in the channel at the same time. A modification of the fixed-charge membrane theory of Teorell was reported (Peng, S., E. Blachly-Dyson, M. Forte, and M. Colombini. 1992. Biophys. J. 62:123–135) in which the channel is divided into two compartments: a relatively charged cylindrical shell of solution adjacent to the wall of the pore and a relatively neutral central cylinder of solution. The zero-current (reversal) potential results in current flow in opposite directions in these two compartments. This description accounted rather well for the observed reversal potential changes following site-directed mutations. Here we report the results of systematic tests of this simple theory with the mitochondrial channel, VDAC (isolated from Neurospora crassa), reconstituted into planar phospholipid membranes. The variation of the observed reversal potential with transmembrane activity ratio, ionic strength, ion mobility ratio, and net charge on the wall of the pore are accounted for reasonably well. The Goldman-Hodgkin-Katz theory fails to account for the observations.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>7694668</pmid><doi>10.1016/S0006-3495(93)81148-2</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 1993-09, Vol.65 (3), p.1093-1100 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1225826 |
source | Open Access: PubMed Central |
subjects | Artificial membranes and reconstituted systems Biological and medical sciences Biophysical Phenomena Biophysics Fundamental and applied biological sciences. Psychology Ion Channels - metabolism Membrane physicochemistry Membrane Potentials Membrane Proteins - metabolism Mitochondria - metabolism Models, Biological Molecular biophysics Neurospora crassa - metabolism Osmolar Concentration Porins Salts Voltage-Dependent Anion Channels |
title | Zero-current potentials in a large membrane channel: a simple theory accounts for complex behavior |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero-current%20potentials%20in%20a%20large%20membrane%20channel:%20a%20simple%20theory%20accounts%20for%20complex%20behavior&rft.jtitle=Biophysical%20journal&rft.au=Zambrowicz,%20E.B.&rft.date=1993-09-01&rft.volume=65&rft.issue=3&rft.spage=1093&rft.epage=1100&rft.pages=1093-1100&rft.issn=0006-3495&rft.eissn=1542-0086&rft.coden=BIOJAU&rft_id=info:doi/10.1016/S0006-3495(93)81148-2&rft_dat=%3Cproquest_pubme%3E76100749%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c557t-de5f8add31954b9c99a9af38b064d77a30e165e243062e3939a338b26c5ab44e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=76100749&rft_id=info:pmid/7694668&rfr_iscdi=true |