Loading…

Zero-current potentials in a large membrane channel: a simple theory accounts for complex behavior

Flow of ions through large channels is complex because both cations and anions can penetrate and multiple ions can be in the channel at the same time. A modification of the fixed-charge membrane theory of Teorell was reported (Peng, S., E. Blachly-Dyson, M. Forte, and M. Colombini. 1992. Biophys. J....

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 1993-09, Vol.65 (3), p.1093-1100
Main Authors: Zambrowicz, E.B., Colombini, M.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c557t-de5f8add31954b9c99a9af38b064d77a30e165e243062e3939a338b26c5ab44e3
cites
container_end_page 1100
container_issue 3
container_start_page 1093
container_title Biophysical journal
container_volume 65
creator Zambrowicz, E.B.
Colombini, M.
description Flow of ions through large channels is complex because both cations and anions can penetrate and multiple ions can be in the channel at the same time. A modification of the fixed-charge membrane theory of Teorell was reported (Peng, S., E. Blachly-Dyson, M. Forte, and M. Colombini. 1992. Biophys. J. 62:123–135) in which the channel is divided into two compartments: a relatively charged cylindrical shell of solution adjacent to the wall of the pore and a relatively neutral central cylinder of solution. The zero-current (reversal) potential results in current flow in opposite directions in these two compartments. This description accounted rather well for the observed reversal potential changes following site-directed mutations. Here we report the results of systematic tests of this simple theory with the mitochondrial channel, VDAC (isolated from Neurospora crassa), reconstituted into planar phospholipid membranes. The variation of the observed reversal potential with transmembrane activity ratio, ionic strength, ion mobility ratio, and net charge on the wall of the pore are accounted for reasonably well. The Goldman-Hodgkin-Katz theory fails to account for the observations.
doi_str_mv 10.1016/S0006-3495(93)81148-2
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1225826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349593811482</els_id><sourcerecordid>76100749</sourcerecordid><originalsourceid>FETCH-LOGICAL-c557t-de5f8add31954b9c99a9af38b064d77a30e165e243062e3939a338b26c5ab44e3</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhS1EVaaFn1DJC4RgEXr9TMwChKoClSp1AWzYWI5z0zFK4sFORvTf4-mMRrBidRfnu-c-DiEXDN4yYPryKwDoSkijXhvxpmFMNhV_QlZMSV4BNPopWR2RZ-Qs558AjCtgp-S01kZq3axI-wNTrPySEk4z3cS5lOCGTMNEHR1cukc64tgmNyH1azdNOLwrSg7jZkA6rzGmB-q8j8s0Z9rHRH3cSb9pi2u3DTE9Jyd9ccQXh3pOvn-6_nb1pbq9-3xz9fG28krVc9Wh6hvXdYIZJVvjjXHG9aJpQcuurp0AZFohlwI0R2GEcaKoXHvlWilRnJP3e9_N0o7Y-XJJcoPdpDC69GCjC_ZfZQprex-3lnGuGq6LwauDQYq_FsyzHUP2OAzl9rhkW2sGUEtTQLUHfYo5J-yPQxjYXTj2MRy7-7w1wj6GY3npu_h7w2PXIY2ivzzoLns39OXpPuQjJhkY1kDBPuwxLN_cBkw2-4CTxy4k9LPtYvjPIn8AayCtkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>76100749</pqid></control><display><type>article</type><title>Zero-current potentials in a large membrane channel: a simple theory accounts for complex behavior</title><source>Open Access: PubMed Central</source><creator>Zambrowicz, E.B. ; Colombini, M.</creator><creatorcontrib>Zambrowicz, E.B. ; Colombini, M.</creatorcontrib><description>Flow of ions through large channels is complex because both cations and anions can penetrate and multiple ions can be in the channel at the same time. A modification of the fixed-charge membrane theory of Teorell was reported (Peng, S., E. Blachly-Dyson, M. Forte, and M. Colombini. 1992. Biophys. J. 62:123–135) in which the channel is divided into two compartments: a relatively charged cylindrical shell of solution adjacent to the wall of the pore and a relatively neutral central cylinder of solution. The zero-current (reversal) potential results in current flow in opposite directions in these two compartments. This description accounted rather well for the observed reversal potential changes following site-directed mutations. Here we report the results of systematic tests of this simple theory with the mitochondrial channel, VDAC (isolated from Neurospora crassa), reconstituted into planar phospholipid membranes. The variation of the observed reversal potential with transmembrane activity ratio, ionic strength, ion mobility ratio, and net charge on the wall of the pore are accounted for reasonably well. The Goldman-Hodgkin-Katz theory fails to account for the observations.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(93)81148-2</identifier><identifier>PMID: 7694668</identifier><identifier>CODEN: BIOJAU</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>Artificial membranes and reconstituted systems ; Biological and medical sciences ; Biophysical Phenomena ; Biophysics ; Fundamental and applied biological sciences. Psychology ; Ion Channels - metabolism ; Membrane physicochemistry ; Membrane Potentials ; Membrane Proteins - metabolism ; Mitochondria - metabolism ; Models, Biological ; Molecular biophysics ; Neurospora crassa - metabolism ; Osmolar Concentration ; Porins ; Salts ; Voltage-Dependent Anion Channels</subject><ispartof>Biophysical journal, 1993-09, Vol.65 (3), p.1093-1100</ispartof><rights>1993 The Biophysical Society</rights><rights>1994 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c557t-de5f8add31954b9c99a9af38b064d77a30e165e243062e3939a338b26c5ab44e3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1225826/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1225826/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4109180$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/7694668$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zambrowicz, E.B.</creatorcontrib><creatorcontrib>Colombini, M.</creatorcontrib><title>Zero-current potentials in a large membrane channel: a simple theory accounts for complex behavior</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Flow of ions through large channels is complex because both cations and anions can penetrate and multiple ions can be in the channel at the same time. A modification of the fixed-charge membrane theory of Teorell was reported (Peng, S., E. Blachly-Dyson, M. Forte, and M. Colombini. 1992. Biophys. J. 62:123–135) in which the channel is divided into two compartments: a relatively charged cylindrical shell of solution adjacent to the wall of the pore and a relatively neutral central cylinder of solution. The zero-current (reversal) potential results in current flow in opposite directions in these two compartments. This description accounted rather well for the observed reversal potential changes following site-directed mutations. Here we report the results of systematic tests of this simple theory with the mitochondrial channel, VDAC (isolated from Neurospora crassa), reconstituted into planar phospholipid membranes. The variation of the observed reversal potential with transmembrane activity ratio, ionic strength, ion mobility ratio, and net charge on the wall of the pore are accounted for reasonably well. The Goldman-Hodgkin-Katz theory fails to account for the observations.</description><subject>Artificial membranes and reconstituted systems</subject><subject>Biological and medical sciences</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Ion Channels - metabolism</subject><subject>Membrane physicochemistry</subject><subject>Membrane Potentials</subject><subject>Membrane Proteins - metabolism</subject><subject>Mitochondria - metabolism</subject><subject>Models, Biological</subject><subject>Molecular biophysics</subject><subject>Neurospora crassa - metabolism</subject><subject>Osmolar Concentration</subject><subject>Porins</subject><subject>Salts</subject><subject>Voltage-Dependent Anion Channels</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAUhS1EVaaFn1DJC4RgEXr9TMwChKoClSp1AWzYWI5z0zFK4sFORvTf4-mMRrBidRfnu-c-DiEXDN4yYPryKwDoSkijXhvxpmFMNhV_QlZMSV4BNPopWR2RZ-Qs558AjCtgp-S01kZq3axI-wNTrPySEk4z3cS5lOCGTMNEHR1cukc64tgmNyH1azdNOLwrSg7jZkA6rzGmB-q8j8s0Z9rHRH3cSb9pi2u3DTE9Jyd9ccQXh3pOvn-6_nb1pbq9-3xz9fG28krVc9Wh6hvXdYIZJVvjjXHG9aJpQcuurp0AZFohlwI0R2GEcaKoXHvlWilRnJP3e9_N0o7Y-XJJcoPdpDC69GCjC_ZfZQprex-3lnGuGq6LwauDQYq_FsyzHUP2OAzl9rhkW2sGUEtTQLUHfYo5J-yPQxjYXTj2MRy7-7w1wj6GY3npu_h7w2PXIY2ivzzoLns39OXpPuQjJhkY1kDBPuwxLN_cBkw2-4CTxy4k9LPtYvjPIn8AayCtkw</recordid><startdate>19930901</startdate><enddate>19930901</enddate><creator>Zambrowicz, E.B.</creator><creator>Colombini, M.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19930901</creationdate><title>Zero-current potentials in a large membrane channel: a simple theory accounts for complex behavior</title><author>Zambrowicz, E.B. ; Colombini, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c557t-de5f8add31954b9c99a9af38b064d77a30e165e243062e3939a338b26c5ab44e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>Artificial membranes and reconstituted systems</topic><topic>Biological and medical sciences</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Ion Channels - metabolism</topic><topic>Membrane physicochemistry</topic><topic>Membrane Potentials</topic><topic>Membrane Proteins - metabolism</topic><topic>Mitochondria - metabolism</topic><topic>Models, Biological</topic><topic>Molecular biophysics</topic><topic>Neurospora crassa - metabolism</topic><topic>Osmolar Concentration</topic><topic>Porins</topic><topic>Salts</topic><topic>Voltage-Dependent Anion Channels</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zambrowicz, E.B.</creatorcontrib><creatorcontrib>Colombini, M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zambrowicz, E.B.</au><au>Colombini, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero-current potentials in a large membrane channel: a simple theory accounts for complex behavior</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1993-09-01</date><risdate>1993</risdate><volume>65</volume><issue>3</issue><spage>1093</spage><epage>1100</epage><pages>1093-1100</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><coden>BIOJAU</coden><abstract>Flow of ions through large channels is complex because both cations and anions can penetrate and multiple ions can be in the channel at the same time. A modification of the fixed-charge membrane theory of Teorell was reported (Peng, S., E. Blachly-Dyson, M. Forte, and M. Colombini. 1992. Biophys. J. 62:123–135) in which the channel is divided into two compartments: a relatively charged cylindrical shell of solution adjacent to the wall of the pore and a relatively neutral central cylinder of solution. The zero-current (reversal) potential results in current flow in opposite directions in these two compartments. This description accounted rather well for the observed reversal potential changes following site-directed mutations. Here we report the results of systematic tests of this simple theory with the mitochondrial channel, VDAC (isolated from Neurospora crassa), reconstituted into planar phospholipid membranes. The variation of the observed reversal potential with transmembrane activity ratio, ionic strength, ion mobility ratio, and net charge on the wall of the pore are accounted for reasonably well. The Goldman-Hodgkin-Katz theory fails to account for the observations.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>7694668</pmid><doi>10.1016/S0006-3495(93)81148-2</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 1993-09, Vol.65 (3), p.1093-1100
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1225826
source Open Access: PubMed Central
subjects Artificial membranes and reconstituted systems
Biological and medical sciences
Biophysical Phenomena
Biophysics
Fundamental and applied biological sciences. Psychology
Ion Channels - metabolism
Membrane physicochemistry
Membrane Potentials
Membrane Proteins - metabolism
Mitochondria - metabolism
Models, Biological
Molecular biophysics
Neurospora crassa - metabolism
Osmolar Concentration
Porins
Salts
Voltage-Dependent Anion Channels
title Zero-current potentials in a large membrane channel: a simple theory accounts for complex behavior
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero-current%20potentials%20in%20a%20large%20membrane%20channel:%20a%20simple%20theory%20accounts%20for%20complex%20behavior&rft.jtitle=Biophysical%20journal&rft.au=Zambrowicz,%20E.B.&rft.date=1993-09-01&rft.volume=65&rft.issue=3&rft.spage=1093&rft.epage=1100&rft.pages=1093-1100&rft.issn=0006-3495&rft.eissn=1542-0086&rft.coden=BIOJAU&rft_id=info:doi/10.1016/S0006-3495(93)81148-2&rft_dat=%3Cproquest_pubme%3E76100749%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c557t-de5f8add31954b9c99a9af38b064d77a30e165e243062e3939a338b26c5ab44e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=76100749&rft_id=info:pmid/7694668&rfr_iscdi=true