Loading…

Secretome Analysis Reveals an Arabidopsis Lipase Involved in Defense against Alternaria brassicicola

The Arabidopsis thaliana secretome was analyzed by the proteomic approach, which led to the identification of secreted proteins implicated in many aspects of cell biology. We then investigated the change in the Arabidopsis secretome in response to salicylic acid and identified several proteins invol...

Full description

Saved in:
Bibliographic Details
Published in:The Plant cell 2005-10, Vol.17 (10), p.2832-2847
Main Authors: Oh, Il Seok, Park, Ae Ran, Bae, Min Seok, Kwon, Sun Jae, Kim, Young Soon, Lee, Ji Eun, Kang, Na Young, Lee, Sumin, Cheong, Hyeonsook, Park, Ohkmae K
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Arabidopsis thaliana secretome was analyzed by the proteomic approach, which led to the identification of secreted proteins implicated in many aspects of cell biology. We then investigated the change in the Arabidopsis secretome in response to salicylic acid and identified several proteins involved in pathogen response. One of these, a secreted lipase with a GDSL-like motif designated GDSL LIPASE1 (GLIP1), was further characterized for its function in disease resistance. glip1 plants were markedly more susceptible to infection by the necrotrophic fungus Alternaria brassicicola compared with the parental wild-type plants. The recombinant GLIP1 protein possessed lipase and antimicrobial activities that directly disrupt fungal spore integrity. Furthermore, GLIP1 appeared to trigger systemic resistance signaling in plants when challenged with A. brassicicola, because pretreatment of the glip1 mutant with recombinant GLIP1 protein inhibited A. brassicicola-induced cell death in both peripheral and distal leaves. Moreover, glip1 showed altered expression of defense- and ethylene-related genes. GLIP1 transcription was increased by ethephon, the ethylene releaser, but not by salicylic acid or jasmonic acid. These results suggest that GLIP1, in association with ethylene signaling, may be a critical component in plant resistance to A. brassicicola.
ISSN:1040-4651
1532-298X
1532-298X
DOI:10.1105/tpc.105.034819