Loading…

Functional and physical interactions of the adaptor protein complex AP-4 with ADP-ribosylation factors (ARFs)

AP‐4 is Sa member of the family of heterotetrameric adaptor protein (AP) complexes that mediate the sorting of integral membrane proteins in post‐Golgi compartments. This complex consists of four subunits (ϵ, β4, μ4 and σ4) and localizes to the cytoplasmic face of the trans ‐Golgi network (TGN). Her...

Full description

Saved in:
Bibliographic Details
Published in:The EMBO journal 2001-11, Vol.20 (22), p.6265-6276
Main Authors: Boehm, Markus, Aguilar, Rubén C., Bonifacino, Juan S.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5487-a32a3f564094a8517de7ebf314132ec651f97a5fb353192f1225870a615121d3
cites
container_end_page 6276
container_issue 22
container_start_page 6265
container_title The EMBO journal
container_volume 20
creator Boehm, Markus
Aguilar, Rubén C.
Bonifacino, Juan S.
description AP‐4 is Sa member of the family of heterotetrameric adaptor protein (AP) complexes that mediate the sorting of integral membrane proteins in post‐Golgi compartments. This complex consists of four subunits (ϵ, β4, μ4 and σ4) and localizes to the cytoplasmic face of the trans ‐Golgi network (TGN). Here, we show that the recruitment of endogenous AP‐4 to the TGN in vivo is regulated by the small GTP‐binding protein ARF1. In addition, we demonstrate a direct interaction of the ϵ and μ4 subunits of AP‐4 with ARF1. ϵ binds only to ARF1·GTP and requires residues in the switch I and switch II regions of ARF1. In contrast, μ4 binds equally well to the GTP‐ and GDP‐bound forms of ARF1 and is less dependent on switch I and switch II residues. These observations establish AP‐4 as an ARF1 effector and suggest a novel mode of interaction between ARF1 and an AP complex involving both constitutive and regulated interactions.
doi_str_mv 10.1093/emboj/20.22.6265
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125733</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>374521581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5487-a32a3f564094a8517de7ebf314132ec651f97a5fb353192f1225870a615121d3</originalsourceid><addsrcrecordid>eNqFkc9v0zAcxS0EYmVw54QsTnBI568d2_GBQ_ejAzRggknsZjmJs7qkcbDTbf3v5y7VGAfEybK-7_P8vn4IvQYyBaLYgV2VfnlAyZTSqaCCP0ETyAXJKJH8KZoQKiDLoVB76EWMS0IILyQ8R3sAkkimiglazdddNTjfmRabrsb9YhNdlS6uG2ww96OIfYOHhcWmNv3gA-6DH6zrcOVXfWtv8ew8y_GNGxZ4dnyeBVf6uGnNFsVNsvAh4nez7_P4_iV61pg22le7cx9dzE8ujj5mZ99OPx3NzrKK54XMDKOGNVzkROWm4CBrK23ZMMiBUVsJDo2Shjcl4wwUbYDStBgxAjhQqNk--jDa9utyZevKdkMwre6DW5mw0d44_fekcwt95a81UC4ZS_zbHR_877WNg176dUhfFDUoTgUtBCQRGUVV8DEG2zz4A9HbdvR9O5oSTanetpOQN49z_QF2dSSBGgU3rrWb_xrqky-HnyVXeTJILIxsTFh3ZcOj0P8OlI2Mi4O9fXjPhF9aSCa5_vn1VB9eymP1QzB9ye4AFbe9XQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195262861</pqid></control><display><type>article</type><title>Functional and physical interactions of the adaptor protein complex AP-4 with ADP-ribosylation factors (ARFs)</title><source>PubMed Central</source><creator>Boehm, Markus ; Aguilar, Rubén C. ; Bonifacino, Juan S.</creator><creatorcontrib>Boehm, Markus ; Aguilar, Rubén C. ; Bonifacino, Juan S.</creatorcontrib><description>AP‐4 is Sa member of the family of heterotetrameric adaptor protein (AP) complexes that mediate the sorting of integral membrane proteins in post‐Golgi compartments. This complex consists of four subunits (ϵ, β4, μ4 and σ4) and localizes to the cytoplasmic face of the trans ‐Golgi network (TGN). Here, we show that the recruitment of endogenous AP‐4 to the TGN in vivo is regulated by the small GTP‐binding protein ARF1. In addition, we demonstrate a direct interaction of the ϵ and μ4 subunits of AP‐4 with ARF1. ϵ binds only to ARF1·GTP and requires residues in the switch I and switch II regions of ARF1. In contrast, μ4 binds equally well to the GTP‐ and GDP‐bound forms of ARF1 and is less dependent on switch I and switch II residues. These observations establish AP‐4 as an ARF1 effector and suggest a novel mode of interaction between ARF1 and an AP complex involving both constitutive and regulated interactions.</description><identifier>ISSN: 0261-4189</identifier><identifier>ISSN: 1460-2075</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1093/emboj/20.22.6265</identifier><identifier>PMID: 11707398</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Adaptor Proteins, Vesicular Transport ; Adenosine diphosphate ; ADP-Ribosylation Factors - metabolism ; AP complex ; ARF protein ; Binding Sites ; brefeldin A ; Brefeldin A - pharmacology ; Carrier Proteins - chemistry ; Carrier Proteins - metabolism ; Cell Membrane - metabolism ; direct interaction ; Golgi Apparatus - metabolism ; HeLa Cells ; Humans ; Immunoblotting ; Membrane Proteins - chemistry ; Membrane Proteins - metabolism ; membrane recruitment ; Microscopy, Fluorescence ; Models, Biological ; Mutagenesis, Site-Directed ; Mutation ; Precipitin Tests ; Protein Binding ; Protein Structure, Tertiary ; Signal Transduction ; Transfection ; Two-Hybrid System Techniques</subject><ispartof>The EMBO journal, 2001-11, Vol.20 (22), p.6265-6276</ispartof><rights>European Molecular Biology Organization 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization</rights><rights>Copyright Oxford University Press(England) Nov 15, 2001</rights><rights>Copyright © 2001 European Molecular Biology Organization 2001</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5487-a32a3f564094a8517de7ebf314132ec651f97a5fb353192f1225870a615121d3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125733/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC125733/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/11707398$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Boehm, Markus</creatorcontrib><creatorcontrib>Aguilar, Rubén C.</creatorcontrib><creatorcontrib>Bonifacino, Juan S.</creatorcontrib><title>Functional and physical interactions of the adaptor protein complex AP-4 with ADP-ribosylation factors (ARFs)</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>AP‐4 is Sa member of the family of heterotetrameric adaptor protein (AP) complexes that mediate the sorting of integral membrane proteins in post‐Golgi compartments. This complex consists of four subunits (ϵ, β4, μ4 and σ4) and localizes to the cytoplasmic face of the trans ‐Golgi network (TGN). Here, we show that the recruitment of endogenous AP‐4 to the TGN in vivo is regulated by the small GTP‐binding protein ARF1. In addition, we demonstrate a direct interaction of the ϵ and μ4 subunits of AP‐4 with ARF1. ϵ binds only to ARF1·GTP and requires residues in the switch I and switch II regions of ARF1. In contrast, μ4 binds equally well to the GTP‐ and GDP‐bound forms of ARF1 and is less dependent on switch I and switch II residues. These observations establish AP‐4 as an ARF1 effector and suggest a novel mode of interaction between ARF1 and an AP complex involving both constitutive and regulated interactions.</description><subject>Adaptor Proteins, Vesicular Transport</subject><subject>Adenosine diphosphate</subject><subject>ADP-Ribosylation Factors - metabolism</subject><subject>AP complex</subject><subject>ARF protein</subject><subject>Binding Sites</subject><subject>brefeldin A</subject><subject>Brefeldin A - pharmacology</subject><subject>Carrier Proteins - chemistry</subject><subject>Carrier Proteins - metabolism</subject><subject>Cell Membrane - metabolism</subject><subject>direct interaction</subject><subject>Golgi Apparatus - metabolism</subject><subject>HeLa Cells</subject><subject>Humans</subject><subject>Immunoblotting</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - metabolism</subject><subject>membrane recruitment</subject><subject>Microscopy, Fluorescence</subject><subject>Models, Biological</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Precipitin Tests</subject><subject>Protein Binding</subject><subject>Protein Structure, Tertiary</subject><subject>Signal Transduction</subject><subject>Transfection</subject><subject>Two-Hybrid System Techniques</subject><issn>0261-4189</issn><issn>1460-2075</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqFkc9v0zAcxS0EYmVw54QsTnBI568d2_GBQ_ejAzRggknsZjmJs7qkcbDTbf3v5y7VGAfEybK-7_P8vn4IvQYyBaLYgV2VfnlAyZTSqaCCP0ETyAXJKJH8KZoQKiDLoVB76EWMS0IILyQ8R3sAkkimiglazdddNTjfmRabrsb9YhNdlS6uG2ww96OIfYOHhcWmNv3gA-6DH6zrcOVXfWtv8ew8y_GNGxZ4dnyeBVf6uGnNFsVNsvAh4nez7_P4_iV61pg22le7cx9dzE8ujj5mZ99OPx3NzrKK54XMDKOGNVzkROWm4CBrK23ZMMiBUVsJDo2Shjcl4wwUbYDStBgxAjhQqNk--jDa9utyZevKdkMwre6DW5mw0d44_fekcwt95a81UC4ZS_zbHR_877WNg176dUhfFDUoTgUtBCQRGUVV8DEG2zz4A9HbdvR9O5oSTanetpOQN49z_QF2dSSBGgU3rrWb_xrqky-HnyVXeTJILIxsTFh3ZcOj0P8OlI2Mi4O9fXjPhF9aSCa5_vn1VB9eymP1QzB9ye4AFbe9XQ</recordid><startdate>20011115</startdate><enddate>20011115</enddate><creator>Boehm, Markus</creator><creator>Aguilar, Rubén C.</creator><creator>Bonifacino, Juan S.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20011115</creationdate><title>Functional and physical interactions of the adaptor protein complex AP-4 with ADP-ribosylation factors (ARFs)</title><author>Boehm, Markus ; Aguilar, Rubén C. ; Bonifacino, Juan S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5487-a32a3f564094a8517de7ebf314132ec651f97a5fb353192f1225870a615121d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adaptor Proteins, Vesicular Transport</topic><topic>Adenosine diphosphate</topic><topic>ADP-Ribosylation Factors - metabolism</topic><topic>AP complex</topic><topic>ARF protein</topic><topic>Binding Sites</topic><topic>brefeldin A</topic><topic>Brefeldin A - pharmacology</topic><topic>Carrier Proteins - chemistry</topic><topic>Carrier Proteins - metabolism</topic><topic>Cell Membrane - metabolism</topic><topic>direct interaction</topic><topic>Golgi Apparatus - metabolism</topic><topic>HeLa Cells</topic><topic>Humans</topic><topic>Immunoblotting</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - metabolism</topic><topic>membrane recruitment</topic><topic>Microscopy, Fluorescence</topic><topic>Models, Biological</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Precipitin Tests</topic><topic>Protein Binding</topic><topic>Protein Structure, Tertiary</topic><topic>Signal Transduction</topic><topic>Transfection</topic><topic>Two-Hybrid System Techniques</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boehm, Markus</creatorcontrib><creatorcontrib>Aguilar, Rubén C.</creatorcontrib><creatorcontrib>Bonifacino, Juan S.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boehm, Markus</au><au>Aguilar, Rubén C.</au><au>Bonifacino, Juan S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional and physical interactions of the adaptor protein complex AP-4 with ADP-ribosylation factors (ARFs)</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2001-11-15</date><risdate>2001</risdate><volume>20</volume><issue>22</issue><spage>6265</spage><epage>6276</epage><pages>6265-6276</pages><issn>0261-4189</issn><issn>1460-2075</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>AP‐4 is Sa member of the family of heterotetrameric adaptor protein (AP) complexes that mediate the sorting of integral membrane proteins in post‐Golgi compartments. This complex consists of four subunits (ϵ, β4, μ4 and σ4) and localizes to the cytoplasmic face of the trans ‐Golgi network (TGN). Here, we show that the recruitment of endogenous AP‐4 to the TGN in vivo is regulated by the small GTP‐binding protein ARF1. In addition, we demonstrate a direct interaction of the ϵ and μ4 subunits of AP‐4 with ARF1. ϵ binds only to ARF1·GTP and requires residues in the switch I and switch II regions of ARF1. In contrast, μ4 binds equally well to the GTP‐ and GDP‐bound forms of ARF1 and is less dependent on switch I and switch II residues. These observations establish AP‐4 as an ARF1 effector and suggest a novel mode of interaction between ARF1 and an AP complex involving both constitutive and regulated interactions.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>11707398</pmid><doi>10.1093/emboj/20.22.6265</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2001-11, Vol.20 (22), p.6265-6276
issn 0261-4189
1460-2075
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_125733
source PubMed Central
subjects Adaptor Proteins, Vesicular Transport
Adenosine diphosphate
ADP-Ribosylation Factors - metabolism
AP complex
ARF protein
Binding Sites
brefeldin A
Brefeldin A - pharmacology
Carrier Proteins - chemistry
Carrier Proteins - metabolism
Cell Membrane - metabolism
direct interaction
Golgi Apparatus - metabolism
HeLa Cells
Humans
Immunoblotting
Membrane Proteins - chemistry
Membrane Proteins - metabolism
membrane recruitment
Microscopy, Fluorescence
Models, Biological
Mutagenesis, Site-Directed
Mutation
Precipitin Tests
Protein Binding
Protein Structure, Tertiary
Signal Transduction
Transfection
Two-Hybrid System Techniques
title Functional and physical interactions of the adaptor protein complex AP-4 with ADP-ribosylation factors (ARFs)
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A56%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20and%20physical%20interactions%20of%20the%20adaptor%20protein%20complex%20AP-4%20with%20ADP-ribosylation%20factors%20(ARFs)&rft.jtitle=The%20EMBO%20journal&rft.au=Boehm,%20Markus&rft.date=2001-11-15&rft.volume=20&rft.issue=22&rft.spage=6265&rft.epage=6276&rft.pages=6265-6276&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1093/emboj/20.22.6265&rft_dat=%3Cproquest_pubme%3E374521581%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5487-a32a3f564094a8517de7ebf314132ec651f97a5fb353192f1225870a615121d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195262861&rft_id=info:pmid/11707398&rfr_iscdi=true