Loading…

Large tetraalkyl ammonium cations produce a reduced conductance state in the sheep cardiac sarcoplasmic reticulum Ca(2+)-release channel

The purified Ca(2+)-release/ryanodine receptor channel of the sheep cardiac muscle sarcoplasmic reticulum (SR) functions as a calcium-activated cation-selective channel under voltage clamp conditions following reconstitution into planar phospholipid bilayers. We have investigated the effect of large...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 1992-05, Vol.61 (5), p.1122-1132
Main Authors: Tinker, A., Lindsay, A.R., Williams, A.J.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purified Ca(2+)-release/ryanodine receptor channel of the sheep cardiac muscle sarcoplasmic reticulum (SR) functions as a calcium-activated cation-selective channel under voltage clamp conditions following reconstitution into planar phospholipid bilayers. We have investigated the effect of large tetraalkyl ammonium (TAA) cations, (CnH2n+1)4N+ (n = 4 and 5) on monovalent cation conduction. These cations modify the conductance of the receptor channel at positive holding potentials from the cytosolic side of the channel. Under these conditions, openings are resolved as a mixture of normal full amplitude events and events of reduced conductance. The amplitude of the reduced conductance state is a fixed proportion of the normal open state. As a proportion of all open events, the occurrence of the tetrabutyl ammonium (TBA+) related subconductance state increases with concentration and increasingly positive holding potential. The TBA+ related subconductance state displays similar conduction properties to the unmodified channel; with a linear current-voltage relationship, a similar affinity for K+ and voltage-dependent block by TEA+. A method was used to quantify the voltage dependence of the occurrence of the TBA+ effect, which yielded an effective gating charge of 1.66. A second method based on kinetic analysis of the voltage dependence of transitions between the full open state and the TBA+ related subconductance state produced a similar value. In addition, this analysis revealed that the bulk of the voltage-dependence resided in the off rate. TBA+ related subconductance events, expressed as a proportion of all open events, saturated with increasing TBA+ concentration. Kinetic analysis revealed that this could be entirely accounted for by changes in the on rate. Tetrapentyl ammonium (TPeA+) causes a qualitatively similar effect with a subconductance state of lower amplitude. The voltage-dependence of the effect was comparable to that displayed by TBA+. These findings are interpreted as a form of partial block in which more than one large TAA cation binds at the extremity of the voltage drop to produce an electrostatic barrier for ion translocation.
ISSN:0006-3495
1542-0086
DOI:10.1016/S0006-3495(92)81922-7