Loading…
Sequential involvement of Cdk1, mTOR and p53 in apoptosis induced by the HIV-1 envelope
Syncytia arising from the fusion of cells expressing the HIV‐1‐encoded Env gene with cells expressing the CD4/CXCR4 complex undergo apoptosis following the nuclear translocation of mammalian target of rapamycin (mTOR), mTOR‐mediated phosphorylation of p53 on Ser15 (p53 S15 ), p53‐dependent upregulat...
Saved in:
Published in: | The EMBO journal 2002-08, Vol.21 (15), p.4070-4080 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Syncytia arising from the fusion of cells expressing the HIV‐1‐encoded
Env
gene with cells expressing the CD4/CXCR4 complex undergo apoptosis following the nuclear translocation of mammalian target of rapamycin (mTOR), mTOR‐mediated phosphorylation of p53 on Ser15 (p53
S15
), p53‐dependent upregulation of Bax and activation of the mitochondrial death pathway. p53
S15
phosphorylation is only detected in syncytia in which nuclear fusion (karyogamy) has occurred. Karyogamy is secondary to a transient upregulation of cyclin B and a mitotic prophase‐like dismantling of the nuclear envelope. Inhibition of cyclin‐dependent kinase‐1 (Cdk1) prevents karyogamy, mTOR activation, p53
S15
phosphorylation and apoptosis. Neutralization of p53 fails to prevent karyogamy, yet suppresses apoptosis. Peripheral blood mononuclear cells from HIV‐1‐infected patients exhibit an increase in cyclin B and mTOR expression, correlating with p53
S15
phosphorylation and viral load. Cdk1 inhibition prevents the death of syncytia elicited by HIV‐1 infection of primary CD4 lymphoblasts. Thus, HIV‐1 elicits a pro‐apoptotic signal transduction pathway relying on the sequential action of cyclin B–Cdk1, mTOR and p53. |
---|---|
ISSN: | 0261-4189 1460-2075 1460-2075 |
DOI: | 10.1093/emboj/cdf391 |