Loading…
Ligand interactions with galactose oxidase: mechanistic insights
Interactions between galactose oxidase and small molecules have been explored using a combination of optical absorption, circular dichroism, and electron paramagnetic resonance (EPR) spectroscopies to detect complex formation and characterize the products. Anions bind directly to the cupric center i...
Saved in:
Published in: | Biophysical journal 1993-03, Vol.64 (3), p.762-772 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c541t-4ab7807d8597691ed6f66a8b77bb39c92b417f38c2c54bcf91079b67a5d4269b3 |
---|---|
cites | |
container_end_page | 772 |
container_issue | 3 |
container_start_page | 762 |
container_title | Biophysical journal |
container_volume | 64 |
creator | Whittaker, M.M. Whittaker, J.W. |
description | Interactions between galactose oxidase and small molecules have been explored using a combination of optical absorption, circular dichroism, and electron paramagnetic resonance (EPR) spectroscopies to detect complex formation and characterize the products. Anions bind directly to the cupric center in both active and inactive galactose oxidase, converting to complexes with optical and EPR spectra that are distinctly different from those of the starting aquo enzyme. Azide binding is coupled to stoichiometric proton uptake by the enzyme, reflecting the generation of a strong base (pKa > 9) in the active site anion adduct. At low temperature, the aquo enzyme converts to a form that exhibits the characteristic optical and EPR spectra of an anion complex, apparently reflecting deprotonation of the coordinated water. Anion binding results in a loss of the optical transition arising from coordinated tyrosine, implying displacement of the axial tyrosine ligand on forming the adduct. Nitric oxide binds to galactose oxidase, forming a specific complex exhibiting an unusual EPR spectrum with all g values below 2. The absence of Cu splitting in this spectrum and the observation that the cupric EPR signal from the active site metal ion is not significantly decreased in the complex suggest a nonmetal interaction site for NO in galactose oxidase. These results have been interpreted in terms of a mechanistic scheme where substrate binding displaces a tyrosinate ligand from the active site cupric ion, generating a base that may serve to deprotonate the coordinated hydroxyl group of the substrate, activating it for oxidation. The protein-NO interactions may probe a nonmetal O2 binding site in this enzyme. |
doi_str_mv | 10.1016/S0006-3495(93)81437-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1262390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349593814371</els_id><sourcerecordid>75672035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-4ab7807d8597691ed6f66a8b77bb39c92b417f38c2c54bcf91079b67a5d4269b3</originalsourceid><addsrcrecordid>eNqFkUuLFDEURoMoYzv6B4SBWojoojQ377jwweALGlyMsw6pVKo6Up2MSXrUf29muml0NasQvvNd7uUgdAb4FWAQry8wxqKnTPMXmr5UwKjs4R5aAWekx1iJ-2h1RB6iR6X8wBgIx3CCThRVAgNfoffrMNs4diFWn62rIcXS_Qp10812af9UfJd-h9EW_6bberexMZQaXCuUMG9qeYweTHYp_snhPUWXnz5-P__Sr799_nr-Yd07zqD2zA5SYTkqrqXQ4EcxCWHVIOUwUO00GRjIiSpHGj-4SQOWehDS8pERoQd6it7u517thq0fnY8128Vc5bC1-Y9JNpj_kxg2Zk7XBoggVOM24PlhQE4_d75Usw3F-WWx0addMZILSTDld4IgmAClVAP5HnQ5lZL9dNwGsLlxZG4dmRsBRlNz68hA6539e8qxdZDS8meH3BZnlynb6EI5YkwKAlw07Okem2wyds4NubzQlDJGZAvf7UPfnFwHn01xwUfnx5C9q2ZM4Y4t_wKRFraO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16461888</pqid></control><display><type>article</type><title>Ligand interactions with galactose oxidase: mechanistic insights</title><source>PubMed Central</source><creator>Whittaker, M.M. ; Whittaker, J.W.</creator><creatorcontrib>Whittaker, M.M. ; Whittaker, J.W.</creatorcontrib><description>Interactions between galactose oxidase and small molecules have been explored using a combination of optical absorption, circular dichroism, and electron paramagnetic resonance (EPR) spectroscopies to detect complex formation and characterize the products. Anions bind directly to the cupric center in both active and inactive galactose oxidase, converting to complexes with optical and EPR spectra that are distinctly different from those of the starting aquo enzyme. Azide binding is coupled to stoichiometric proton uptake by the enzyme, reflecting the generation of a strong base (pKa > 9) in the active site anion adduct. At low temperature, the aquo enzyme converts to a form that exhibits the characteristic optical and EPR spectra of an anion complex, apparently reflecting deprotonation of the coordinated water. Anion binding results in a loss of the optical transition arising from coordinated tyrosine, implying displacement of the axial tyrosine ligand on forming the adduct. Nitric oxide binds to galactose oxidase, forming a specific complex exhibiting an unusual EPR spectrum with all g values below 2. The absence of Cu splitting in this spectrum and the observation that the cupric EPR signal from the active site metal ion is not significantly decreased in the complex suggest a nonmetal interaction site for NO in galactose oxidase. These results have been interpreted in terms of a mechanistic scheme where substrate binding displaces a tyrosinate ligand from the active site cupric ion, generating a base that may serve to deprotonate the coordinated hydroxyl group of the substrate, activating it for oxidation. The protein-NO interactions may probe a nonmetal O2 binding site in this enzyme.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(93)81437-1</identifier><identifier>PMID: 8386015</identifier><identifier>CODEN: BIOJAU</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; ALCOHOL DEHYDROGENASE ; ALCOHOL DESHIDROGENASA ; ALCOHOL OXIDOREDUCTASES ; ALCOOL DESHYDROGENASE ; Analytical, structural and metabolic biochemistry ; ANION ; ANIONES ; ANIONS ; azide ; BINDING SITE ; Binding Sites ; Biological and medical sciences ; Biophysical Phenomena ; Biophysics ; C.D ; catalysis ; Circular Dichroism ; COBRE ; COPPER ; CUIVRE ; E.S.R ; ELECTRON PARAMAGNETIC RESONANCE SPECTROS ; Electron Spin Resonance Spectroscopy ; Enzyme Activation ; Enzymes and enzyme inhibitors ; ENZYMIC ACTIVITY ; ESPECTROSCOPIA ESR ; ESR SPECTROSCOPY ; Fundamental and applied biological sciences. Psychology ; galactose oxidase ; Galactose Oxidase - chemistry ; Galactose Oxidase - metabolism ; HYPOMYCES ; HYPOMYCES ROSELLUS ; interaction ; LIGAND ; LIGANDOS ; LIGANDS ; mechanisms ; Mitosporic Fungi - enzymology ; Molecular Structure ; NITRIC OXIDE ; NITROGEN OXIDES ; Oxidoreductases ; OXIDOS DE NITROGENO ; OXYDE D'AZOTE ; Spectrophotometry ; SPECTROSCOPIE RSE ; Thermodynamics</subject><ispartof>Biophysical journal, 1993-03, Vol.64 (3), p.762-772</ispartof><rights>1993 The Biophysical Society</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-4ab7807d8597691ed6f66a8b77bb39c92b417f38c2c54bcf91079b67a5d4269b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1262390/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1262390/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=4762156$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8386015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Whittaker, M.M.</creatorcontrib><creatorcontrib>Whittaker, J.W.</creatorcontrib><title>Ligand interactions with galactose oxidase: mechanistic insights</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Interactions between galactose oxidase and small molecules have been explored using a combination of optical absorption, circular dichroism, and electron paramagnetic resonance (EPR) spectroscopies to detect complex formation and characterize the products. Anions bind directly to the cupric center in both active and inactive galactose oxidase, converting to complexes with optical and EPR spectra that are distinctly different from those of the starting aquo enzyme. Azide binding is coupled to stoichiometric proton uptake by the enzyme, reflecting the generation of a strong base (pKa > 9) in the active site anion adduct. At low temperature, the aquo enzyme converts to a form that exhibits the characteristic optical and EPR spectra of an anion complex, apparently reflecting deprotonation of the coordinated water. Anion binding results in a loss of the optical transition arising from coordinated tyrosine, implying displacement of the axial tyrosine ligand on forming the adduct. Nitric oxide binds to galactose oxidase, forming a specific complex exhibiting an unusual EPR spectrum with all g values below 2. The absence of Cu splitting in this spectrum and the observation that the cupric EPR signal from the active site metal ion is not significantly decreased in the complex suggest a nonmetal interaction site for NO in galactose oxidase. These results have been interpreted in terms of a mechanistic scheme where substrate binding displaces a tyrosinate ligand from the active site cupric ion, generating a base that may serve to deprotonate the coordinated hydroxyl group of the substrate, activating it for oxidation. The protein-NO interactions may probe a nonmetal O2 binding site in this enzyme.</description><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>ALCOHOL DEHYDROGENASE</subject><subject>ALCOHOL DESHIDROGENASA</subject><subject>ALCOHOL OXIDOREDUCTASES</subject><subject>ALCOOL DESHYDROGENASE</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>ANION</subject><subject>ANIONES</subject><subject>ANIONS</subject><subject>azide</subject><subject>BINDING SITE</subject><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>C.D</subject><subject>catalysis</subject><subject>Circular Dichroism</subject><subject>COBRE</subject><subject>COPPER</subject><subject>CUIVRE</subject><subject>E.S.R</subject><subject>ELECTRON PARAMAGNETIC RESONANCE SPECTROS</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Enzyme Activation</subject><subject>Enzymes and enzyme inhibitors</subject><subject>ENZYMIC ACTIVITY</subject><subject>ESPECTROSCOPIA ESR</subject><subject>ESR SPECTROSCOPY</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>galactose oxidase</subject><subject>Galactose Oxidase - chemistry</subject><subject>Galactose Oxidase - metabolism</subject><subject>HYPOMYCES</subject><subject>HYPOMYCES ROSELLUS</subject><subject>interaction</subject><subject>LIGAND</subject><subject>LIGANDOS</subject><subject>LIGANDS</subject><subject>mechanisms</subject><subject>Mitosporic Fungi - enzymology</subject><subject>Molecular Structure</subject><subject>NITRIC OXIDE</subject><subject>NITROGEN OXIDES</subject><subject>Oxidoreductases</subject><subject>OXIDOS DE NITROGENO</subject><subject>OXYDE D'AZOTE</subject><subject>Spectrophotometry</subject><subject>SPECTROSCOPIE RSE</subject><subject>Thermodynamics</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFkUuLFDEURoMoYzv6B4SBWojoojQ377jwweALGlyMsw6pVKo6Up2MSXrUf29muml0NasQvvNd7uUgdAb4FWAQry8wxqKnTPMXmr5UwKjs4R5aAWekx1iJ-2h1RB6iR6X8wBgIx3CCThRVAgNfoffrMNs4diFWn62rIcXS_Qp10812af9UfJd-h9EW_6bberexMZQaXCuUMG9qeYweTHYp_snhPUWXnz5-P__Sr799_nr-Yd07zqD2zA5SYTkqrqXQ4EcxCWHVIOUwUO00GRjIiSpHGj-4SQOWehDS8pERoQd6it7u517thq0fnY8128Vc5bC1-Y9JNpj_kxg2Zk7XBoggVOM24PlhQE4_d75Usw3F-WWx0addMZILSTDld4IgmAClVAP5HnQ5lZL9dNwGsLlxZG4dmRsBRlNz68hA6539e8qxdZDS8meH3BZnlynb6EI5YkwKAlw07Okem2wyds4NubzQlDJGZAvf7UPfnFwHn01xwUfnx5C9q2ZM4Y4t_wKRFraO</recordid><startdate>19930301</startdate><enddate>19930301</enddate><creator>Whittaker, M.M.</creator><creator>Whittaker, J.W.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M81</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19930301</creationdate><title>Ligand interactions with galactose oxidase: mechanistic insights</title><author>Whittaker, M.M. ; Whittaker, J.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-4ab7807d8597691ed6f66a8b77bb39c92b417f38c2c54bcf91079b67a5d4269b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>ALCOHOL DEHYDROGENASE</topic><topic>ALCOHOL DESHIDROGENASA</topic><topic>ALCOHOL OXIDOREDUCTASES</topic><topic>ALCOOL DESHYDROGENASE</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>ANION</topic><topic>ANIONES</topic><topic>ANIONS</topic><topic>azide</topic><topic>BINDING SITE</topic><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>C.D</topic><topic>catalysis</topic><topic>Circular Dichroism</topic><topic>COBRE</topic><topic>COPPER</topic><topic>CUIVRE</topic><topic>E.S.R</topic><topic>ELECTRON PARAMAGNETIC RESONANCE SPECTROS</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Enzyme Activation</topic><topic>Enzymes and enzyme inhibitors</topic><topic>ENZYMIC ACTIVITY</topic><topic>ESPECTROSCOPIA ESR</topic><topic>ESR SPECTROSCOPY</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>galactose oxidase</topic><topic>Galactose Oxidase - chemistry</topic><topic>Galactose Oxidase - metabolism</topic><topic>HYPOMYCES</topic><topic>HYPOMYCES ROSELLUS</topic><topic>interaction</topic><topic>LIGAND</topic><topic>LIGANDOS</topic><topic>LIGANDS</topic><topic>mechanisms</topic><topic>Mitosporic Fungi - enzymology</topic><topic>Molecular Structure</topic><topic>NITRIC OXIDE</topic><topic>NITROGEN OXIDES</topic><topic>Oxidoreductases</topic><topic>OXIDOS DE NITROGENO</topic><topic>OXYDE D'AZOTE</topic><topic>Spectrophotometry</topic><topic>SPECTROSCOPIE RSE</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whittaker, M.M.</creatorcontrib><creatorcontrib>Whittaker, J.W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 3</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whittaker, M.M.</au><au>Whittaker, J.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ligand interactions with galactose oxidase: mechanistic insights</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1993-03-01</date><risdate>1993</risdate><volume>64</volume><issue>3</issue><spage>762</spage><epage>772</epage><pages>762-772</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><coden>BIOJAU</coden><abstract>Interactions between galactose oxidase and small molecules have been explored using a combination of optical absorption, circular dichroism, and electron paramagnetic resonance (EPR) spectroscopies to detect complex formation and characterize the products. Anions bind directly to the cupric center in both active and inactive galactose oxidase, converting to complexes with optical and EPR spectra that are distinctly different from those of the starting aquo enzyme. Azide binding is coupled to stoichiometric proton uptake by the enzyme, reflecting the generation of a strong base (pKa > 9) in the active site anion adduct. At low temperature, the aquo enzyme converts to a form that exhibits the characteristic optical and EPR spectra of an anion complex, apparently reflecting deprotonation of the coordinated water. Anion binding results in a loss of the optical transition arising from coordinated tyrosine, implying displacement of the axial tyrosine ligand on forming the adduct. Nitric oxide binds to galactose oxidase, forming a specific complex exhibiting an unusual EPR spectrum with all g values below 2. The absence of Cu splitting in this spectrum and the observation that the cupric EPR signal from the active site metal ion is not significantly decreased in the complex suggest a nonmetal interaction site for NO in galactose oxidase. These results have been interpreted in terms of a mechanistic scheme where substrate binding displaces a tyrosinate ligand from the active site cupric ion, generating a base that may serve to deprotonate the coordinated hydroxyl group of the substrate, activating it for oxidation. The protein-NO interactions may probe a nonmetal O2 binding site in this enzyme.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>8386015</pmid><doi>10.1016/S0006-3495(93)81437-1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 1993-03, Vol.64 (3), p.762-772 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1262390 |
source | PubMed Central |
subjects | ACTIVIDAD ENZIMATICA ACTIVITE ENZYMATIQUE ALCOHOL DEHYDROGENASE ALCOHOL DESHIDROGENASA ALCOHOL OXIDOREDUCTASES ALCOOL DESHYDROGENASE Analytical, structural and metabolic biochemistry ANION ANIONES ANIONS azide BINDING SITE Binding Sites Biological and medical sciences Biophysical Phenomena Biophysics C.D catalysis Circular Dichroism COBRE COPPER CUIVRE E.S.R ELECTRON PARAMAGNETIC RESONANCE SPECTROS Electron Spin Resonance Spectroscopy Enzyme Activation Enzymes and enzyme inhibitors ENZYMIC ACTIVITY ESPECTROSCOPIA ESR ESR SPECTROSCOPY Fundamental and applied biological sciences. Psychology galactose oxidase Galactose Oxidase - chemistry Galactose Oxidase - metabolism HYPOMYCES HYPOMYCES ROSELLUS interaction LIGAND LIGANDOS LIGANDS mechanisms Mitosporic Fungi - enzymology Molecular Structure NITRIC OXIDE NITROGEN OXIDES Oxidoreductases OXIDOS DE NITROGENO OXYDE D'AZOTE Spectrophotometry SPECTROSCOPIE RSE Thermodynamics |
title | Ligand interactions with galactose oxidase: mechanistic insights |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ligand%20interactions%20with%20galactose%20oxidase:%20mechanistic%20insights&rft.jtitle=Biophysical%20journal&rft.au=Whittaker,%20M.M.&rft.date=1993-03-01&rft.volume=64&rft.issue=3&rft.spage=762&rft.epage=772&rft.pages=762-772&rft.issn=0006-3495&rft.eissn=1542-0086&rft.coden=BIOJAU&rft_id=info:doi/10.1016/S0006-3495(93)81437-1&rft_dat=%3Cproquest_pubme%3E75672035%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-4ab7807d8597691ed6f66a8b77bb39c92b417f38c2c54bcf91079b67a5d4269b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16461888&rft_id=info:pmid/8386015&rfr_iscdi=true |