Loading…

Ligand interactions with galactose oxidase: mechanistic insights

Interactions between galactose oxidase and small molecules have been explored using a combination of optical absorption, circular dichroism, and electron paramagnetic resonance (EPR) spectroscopies to detect complex formation and characterize the products. Anions bind directly to the cupric center i...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 1993-03, Vol.64 (3), p.762-772
Main Authors: Whittaker, M.M., Whittaker, J.W.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c541t-4ab7807d8597691ed6f66a8b77bb39c92b417f38c2c54bcf91079b67a5d4269b3
cites
container_end_page 772
container_issue 3
container_start_page 762
container_title Biophysical journal
container_volume 64
creator Whittaker, M.M.
Whittaker, J.W.
description Interactions between galactose oxidase and small molecules have been explored using a combination of optical absorption, circular dichroism, and electron paramagnetic resonance (EPR) spectroscopies to detect complex formation and characterize the products. Anions bind directly to the cupric center in both active and inactive galactose oxidase, converting to complexes with optical and EPR spectra that are distinctly different from those of the starting aquo enzyme. Azide binding is coupled to stoichiometric proton uptake by the enzyme, reflecting the generation of a strong base (pKa > 9) in the active site anion adduct. At low temperature, the aquo enzyme converts to a form that exhibits the characteristic optical and EPR spectra of an anion complex, apparently reflecting deprotonation of the coordinated water. Anion binding results in a loss of the optical transition arising from coordinated tyrosine, implying displacement of the axial tyrosine ligand on forming the adduct. Nitric oxide binds to galactose oxidase, forming a specific complex exhibiting an unusual EPR spectrum with all g values below 2. The absence of Cu splitting in this spectrum and the observation that the cupric EPR signal from the active site metal ion is not significantly decreased in the complex suggest a nonmetal interaction site for NO in galactose oxidase. These results have been interpreted in terms of a mechanistic scheme where substrate binding displaces a tyrosinate ligand from the active site cupric ion, generating a base that may serve to deprotonate the coordinated hydroxyl group of the substrate, activating it for oxidation. The protein-NO interactions may probe a nonmetal O2 binding site in this enzyme.
doi_str_mv 10.1016/S0006-3495(93)81437-1
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1262390</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349593814371</els_id><sourcerecordid>75672035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-4ab7807d8597691ed6f66a8b77bb39c92b417f38c2c54bcf91079b67a5d4269b3</originalsourceid><addsrcrecordid>eNqFkUuLFDEURoMoYzv6B4SBWojoojQ377jwweALGlyMsw6pVKo6Up2MSXrUf29muml0NasQvvNd7uUgdAb4FWAQry8wxqKnTPMXmr5UwKjs4R5aAWekx1iJ-2h1RB6iR6X8wBgIx3CCThRVAgNfoffrMNs4diFWn62rIcXS_Qp10812af9UfJd-h9EW_6bberexMZQaXCuUMG9qeYweTHYp_snhPUWXnz5-P__Sr799_nr-Yd07zqD2zA5SYTkqrqXQ4EcxCWHVIOUwUO00GRjIiSpHGj-4SQOWehDS8pERoQd6it7u517thq0fnY8128Vc5bC1-Y9JNpj_kxg2Zk7XBoggVOM24PlhQE4_d75Usw3F-WWx0addMZILSTDld4IgmAClVAP5HnQ5lZL9dNwGsLlxZG4dmRsBRlNz68hA6539e8qxdZDS8meH3BZnlynb6EI5YkwKAlw07Okem2wyds4NubzQlDJGZAvf7UPfnFwHn01xwUfnx5C9q2ZM4Y4t_wKRFraO</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>16461888</pqid></control><display><type>article</type><title>Ligand interactions with galactose oxidase: mechanistic insights</title><source>PubMed Central</source><creator>Whittaker, M.M. ; Whittaker, J.W.</creator><creatorcontrib>Whittaker, M.M. ; Whittaker, J.W.</creatorcontrib><description>Interactions between galactose oxidase and small molecules have been explored using a combination of optical absorption, circular dichroism, and electron paramagnetic resonance (EPR) spectroscopies to detect complex formation and characterize the products. Anions bind directly to the cupric center in both active and inactive galactose oxidase, converting to complexes with optical and EPR spectra that are distinctly different from those of the starting aquo enzyme. Azide binding is coupled to stoichiometric proton uptake by the enzyme, reflecting the generation of a strong base (pKa &gt; 9) in the active site anion adduct. At low temperature, the aquo enzyme converts to a form that exhibits the characteristic optical and EPR spectra of an anion complex, apparently reflecting deprotonation of the coordinated water. Anion binding results in a loss of the optical transition arising from coordinated tyrosine, implying displacement of the axial tyrosine ligand on forming the adduct. Nitric oxide binds to galactose oxidase, forming a specific complex exhibiting an unusual EPR spectrum with all g values below 2. The absence of Cu splitting in this spectrum and the observation that the cupric EPR signal from the active site metal ion is not significantly decreased in the complex suggest a nonmetal interaction site for NO in galactose oxidase. These results have been interpreted in terms of a mechanistic scheme where substrate binding displaces a tyrosinate ligand from the active site cupric ion, generating a base that may serve to deprotonate the coordinated hydroxyl group of the substrate, activating it for oxidation. The protein-NO interactions may probe a nonmetal O2 binding site in this enzyme.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(93)81437-1</identifier><identifier>PMID: 8386015</identifier><identifier>CODEN: BIOJAU</identifier><language>eng</language><publisher>Bethesda, MD: Elsevier Inc</publisher><subject>ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; ALCOHOL DEHYDROGENASE ; ALCOHOL DESHIDROGENASA ; ALCOHOL OXIDOREDUCTASES ; ALCOOL DESHYDROGENASE ; Analytical, structural and metabolic biochemistry ; ANION ; ANIONES ; ANIONS ; azide ; BINDING SITE ; Binding Sites ; Biological and medical sciences ; Biophysical Phenomena ; Biophysics ; C.D ; catalysis ; Circular Dichroism ; COBRE ; COPPER ; CUIVRE ; E.S.R ; ELECTRON PARAMAGNETIC RESONANCE SPECTROS ; Electron Spin Resonance Spectroscopy ; Enzyme Activation ; Enzymes and enzyme inhibitors ; ENZYMIC ACTIVITY ; ESPECTROSCOPIA ESR ; ESR SPECTROSCOPY ; Fundamental and applied biological sciences. Psychology ; galactose oxidase ; Galactose Oxidase - chemistry ; Galactose Oxidase - metabolism ; HYPOMYCES ; HYPOMYCES ROSELLUS ; interaction ; LIGAND ; LIGANDOS ; LIGANDS ; mechanisms ; Mitosporic Fungi - enzymology ; Molecular Structure ; NITRIC OXIDE ; NITROGEN OXIDES ; Oxidoreductases ; OXIDOS DE NITROGENO ; OXYDE D'AZOTE ; Spectrophotometry ; SPECTROSCOPIE RSE ; Thermodynamics</subject><ispartof>Biophysical journal, 1993-03, Vol.64 (3), p.762-772</ispartof><rights>1993 The Biophysical Society</rights><rights>1993 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-4ab7807d8597691ed6f66a8b77bb39c92b417f38c2c54bcf91079b67a5d4269b3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1262390/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1262390/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=4762156$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/8386015$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Whittaker, M.M.</creatorcontrib><creatorcontrib>Whittaker, J.W.</creatorcontrib><title>Ligand interactions with galactose oxidase: mechanistic insights</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Interactions between galactose oxidase and small molecules have been explored using a combination of optical absorption, circular dichroism, and electron paramagnetic resonance (EPR) spectroscopies to detect complex formation and characterize the products. Anions bind directly to the cupric center in both active and inactive galactose oxidase, converting to complexes with optical and EPR spectra that are distinctly different from those of the starting aquo enzyme. Azide binding is coupled to stoichiometric proton uptake by the enzyme, reflecting the generation of a strong base (pKa &gt; 9) in the active site anion adduct. At low temperature, the aquo enzyme converts to a form that exhibits the characteristic optical and EPR spectra of an anion complex, apparently reflecting deprotonation of the coordinated water. Anion binding results in a loss of the optical transition arising from coordinated tyrosine, implying displacement of the axial tyrosine ligand on forming the adduct. Nitric oxide binds to galactose oxidase, forming a specific complex exhibiting an unusual EPR spectrum with all g values below 2. The absence of Cu splitting in this spectrum and the observation that the cupric EPR signal from the active site metal ion is not significantly decreased in the complex suggest a nonmetal interaction site for NO in galactose oxidase. These results have been interpreted in terms of a mechanistic scheme where substrate binding displaces a tyrosinate ligand from the active site cupric ion, generating a base that may serve to deprotonate the coordinated hydroxyl group of the substrate, activating it for oxidation. The protein-NO interactions may probe a nonmetal O2 binding site in this enzyme.</description><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>ALCOHOL DEHYDROGENASE</subject><subject>ALCOHOL DESHIDROGENASA</subject><subject>ALCOHOL OXIDOREDUCTASES</subject><subject>ALCOOL DESHYDROGENASE</subject><subject>Analytical, structural and metabolic biochemistry</subject><subject>ANION</subject><subject>ANIONES</subject><subject>ANIONS</subject><subject>azide</subject><subject>BINDING SITE</subject><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>C.D</subject><subject>catalysis</subject><subject>Circular Dichroism</subject><subject>COBRE</subject><subject>COPPER</subject><subject>CUIVRE</subject><subject>E.S.R</subject><subject>ELECTRON PARAMAGNETIC RESONANCE SPECTROS</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Enzyme Activation</subject><subject>Enzymes and enzyme inhibitors</subject><subject>ENZYMIC ACTIVITY</subject><subject>ESPECTROSCOPIA ESR</subject><subject>ESR SPECTROSCOPY</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>galactose oxidase</subject><subject>Galactose Oxidase - chemistry</subject><subject>Galactose Oxidase - metabolism</subject><subject>HYPOMYCES</subject><subject>HYPOMYCES ROSELLUS</subject><subject>interaction</subject><subject>LIGAND</subject><subject>LIGANDOS</subject><subject>LIGANDS</subject><subject>mechanisms</subject><subject>Mitosporic Fungi - enzymology</subject><subject>Molecular Structure</subject><subject>NITRIC OXIDE</subject><subject>NITROGEN OXIDES</subject><subject>Oxidoreductases</subject><subject>OXIDOS DE NITROGENO</subject><subject>OXYDE D'AZOTE</subject><subject>Spectrophotometry</subject><subject>SPECTROSCOPIE RSE</subject><subject>Thermodynamics</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1993</creationdate><recordtype>article</recordtype><recordid>eNqFkUuLFDEURoMoYzv6B4SBWojoojQ377jwweALGlyMsw6pVKo6Up2MSXrUf29muml0NasQvvNd7uUgdAb4FWAQry8wxqKnTPMXmr5UwKjs4R5aAWekx1iJ-2h1RB6iR6X8wBgIx3CCThRVAgNfoffrMNs4diFWn62rIcXS_Qp10812af9UfJd-h9EW_6bberexMZQaXCuUMG9qeYweTHYp_snhPUWXnz5-P__Sr799_nr-Yd07zqD2zA5SYTkqrqXQ4EcxCWHVIOUwUO00GRjIiSpHGj-4SQOWehDS8pERoQd6it7u517thq0fnY8128Vc5bC1-Y9JNpj_kxg2Zk7XBoggVOM24PlhQE4_d75Usw3F-WWx0addMZILSTDld4IgmAClVAP5HnQ5lZL9dNwGsLlxZG4dmRsBRlNz68hA6539e8qxdZDS8meH3BZnlynb6EI5YkwKAlw07Okem2wyds4NubzQlDJGZAvf7UPfnFwHn01xwUfnx5C9q2ZM4Y4t_wKRFraO</recordid><startdate>19930301</startdate><enddate>19930301</enddate><creator>Whittaker, M.M.</creator><creator>Whittaker, J.W.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M81</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19930301</creationdate><title>Ligand interactions with galactose oxidase: mechanistic insights</title><author>Whittaker, M.M. ; Whittaker, J.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-4ab7807d8597691ed6f66a8b77bb39c92b417f38c2c54bcf91079b67a5d4269b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1993</creationdate><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>ALCOHOL DEHYDROGENASE</topic><topic>ALCOHOL DESHIDROGENASA</topic><topic>ALCOHOL OXIDOREDUCTASES</topic><topic>ALCOOL DESHYDROGENASE</topic><topic>Analytical, structural and metabolic biochemistry</topic><topic>ANION</topic><topic>ANIONES</topic><topic>ANIONS</topic><topic>azide</topic><topic>BINDING SITE</topic><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>C.D</topic><topic>catalysis</topic><topic>Circular Dichroism</topic><topic>COBRE</topic><topic>COPPER</topic><topic>CUIVRE</topic><topic>E.S.R</topic><topic>ELECTRON PARAMAGNETIC RESONANCE SPECTROS</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Enzyme Activation</topic><topic>Enzymes and enzyme inhibitors</topic><topic>ENZYMIC ACTIVITY</topic><topic>ESPECTROSCOPIA ESR</topic><topic>ESR SPECTROSCOPY</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>galactose oxidase</topic><topic>Galactose Oxidase - chemistry</topic><topic>Galactose Oxidase - metabolism</topic><topic>HYPOMYCES</topic><topic>HYPOMYCES ROSELLUS</topic><topic>interaction</topic><topic>LIGAND</topic><topic>LIGANDOS</topic><topic>LIGANDS</topic><topic>mechanisms</topic><topic>Mitosporic Fungi - enzymology</topic><topic>Molecular Structure</topic><topic>NITRIC OXIDE</topic><topic>NITROGEN OXIDES</topic><topic>Oxidoreductases</topic><topic>OXIDOS DE NITROGENO</topic><topic>OXYDE D'AZOTE</topic><topic>Spectrophotometry</topic><topic>SPECTROSCOPIE RSE</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Whittaker, M.M.</creatorcontrib><creatorcontrib>Whittaker, J.W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biochemistry Abstracts 3</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Whittaker, M.M.</au><au>Whittaker, J.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ligand interactions with galactose oxidase: mechanistic insights</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1993-03-01</date><risdate>1993</risdate><volume>64</volume><issue>3</issue><spage>762</spage><epage>772</epage><pages>762-772</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><coden>BIOJAU</coden><abstract>Interactions between galactose oxidase and small molecules have been explored using a combination of optical absorption, circular dichroism, and electron paramagnetic resonance (EPR) spectroscopies to detect complex formation and characterize the products. Anions bind directly to the cupric center in both active and inactive galactose oxidase, converting to complexes with optical and EPR spectra that are distinctly different from those of the starting aquo enzyme. Azide binding is coupled to stoichiometric proton uptake by the enzyme, reflecting the generation of a strong base (pKa &gt; 9) in the active site anion adduct. At low temperature, the aquo enzyme converts to a form that exhibits the characteristic optical and EPR spectra of an anion complex, apparently reflecting deprotonation of the coordinated water. Anion binding results in a loss of the optical transition arising from coordinated tyrosine, implying displacement of the axial tyrosine ligand on forming the adduct. Nitric oxide binds to galactose oxidase, forming a specific complex exhibiting an unusual EPR spectrum with all g values below 2. The absence of Cu splitting in this spectrum and the observation that the cupric EPR signal from the active site metal ion is not significantly decreased in the complex suggest a nonmetal interaction site for NO in galactose oxidase. These results have been interpreted in terms of a mechanistic scheme where substrate binding displaces a tyrosinate ligand from the active site cupric ion, generating a base that may serve to deprotonate the coordinated hydroxyl group of the substrate, activating it for oxidation. The protein-NO interactions may probe a nonmetal O2 binding site in this enzyme.</abstract><cop>Bethesda, MD</cop><pub>Elsevier Inc</pub><pmid>8386015</pmid><doi>10.1016/S0006-3495(93)81437-1</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 1993-03, Vol.64 (3), p.762-772
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1262390
source PubMed Central
subjects ACTIVIDAD ENZIMATICA
ACTIVITE ENZYMATIQUE
ALCOHOL DEHYDROGENASE
ALCOHOL DESHIDROGENASA
ALCOHOL OXIDOREDUCTASES
ALCOOL DESHYDROGENASE
Analytical, structural and metabolic biochemistry
ANION
ANIONES
ANIONS
azide
BINDING SITE
Binding Sites
Biological and medical sciences
Biophysical Phenomena
Biophysics
C.D
catalysis
Circular Dichroism
COBRE
COPPER
CUIVRE
E.S.R
ELECTRON PARAMAGNETIC RESONANCE SPECTROS
Electron Spin Resonance Spectroscopy
Enzyme Activation
Enzymes and enzyme inhibitors
ENZYMIC ACTIVITY
ESPECTROSCOPIA ESR
ESR SPECTROSCOPY
Fundamental and applied biological sciences. Psychology
galactose oxidase
Galactose Oxidase - chemistry
Galactose Oxidase - metabolism
HYPOMYCES
HYPOMYCES ROSELLUS
interaction
LIGAND
LIGANDOS
LIGANDS
mechanisms
Mitosporic Fungi - enzymology
Molecular Structure
NITRIC OXIDE
NITROGEN OXIDES
Oxidoreductases
OXIDOS DE NITROGENO
OXYDE D'AZOTE
Spectrophotometry
SPECTROSCOPIE RSE
Thermodynamics
title Ligand interactions with galactose oxidase: mechanistic insights
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A57%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ligand%20interactions%20with%20galactose%20oxidase:%20mechanistic%20insights&rft.jtitle=Biophysical%20journal&rft.au=Whittaker,%20M.M.&rft.date=1993-03-01&rft.volume=64&rft.issue=3&rft.spage=762&rft.epage=772&rft.pages=762-772&rft.issn=0006-3495&rft.eissn=1542-0086&rft.coden=BIOJAU&rft_id=info:doi/10.1016/S0006-3495(93)81437-1&rft_dat=%3Cproquest_pubme%3E75672035%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c541t-4ab7807d8597691ed6f66a8b77bb39c92b417f38c2c54bcf91079b67a5d4269b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=16461888&rft_id=info:pmid/8386015&rfr_iscdi=true