Loading…

Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast

The 20S proteasome is made up of four stacked heptameric rings, which in eucaryotes assemble from 14 different but related subunits. The rules governing subunit assembly and placement are not understood. We show that a different kind of proteasome forms in yeast when the Pre9/α3 subunit is deleted....

Full description

Saved in:
Bibliographic Details
Published in:The EMBO journal 2004-02, Vol.23 (3), p.500-510
Main Authors: Velichutina, Irina, Connerly, Pamela L, Arendt, Cassandra S, Li, Xia, Hochstrasser, Mark
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6689-4e66eb605cd721cddff67cc1f627231f229cab03476bb1b2abb54940d9ae5c123
cites
container_end_page 510
container_issue 3
container_start_page 500
container_title The EMBO journal
container_volume 23
creator Velichutina, Irina
Connerly, Pamela L
Arendt, Cassandra S
Li, Xia
Hochstrasser, Mark
description The 20S proteasome is made up of four stacked heptameric rings, which in eucaryotes assemble from 14 different but related subunits. The rules governing subunit assembly and placement are not understood. We show that a different kind of proteasome forms in yeast when the Pre9/α3 subunit is deleted. Purified pre9Δ proteasomes show a two‐fold enrichment for the Pre6/α4 subunit, consistent with the presence of an extra copy of Pre6 in each outer ring. Based on disulfide engineering and structure‐guided suppressor analyses, Pre6 takes the position normally occupied by Pre9, a substitution that depends on a network of intersubunit salt bridges. When Arabidopsis PAD1/α4 is expressed in yeast, it complements not only pre6 Δ but also pre6 Δ pre9 Δ mutants; therefore, the plant α4 subunit also can occupy multiple positions in a functional yeast proteasome. Importantly, biogenesis of proteasomes is delayed at an early stage in pre9 Δ cells, suggesting an advantage for Pre9 over Pre6 incorporation at the α3 position that facilitates correct assembly.
doi_str_mv 10.1038/sj.emboj.7600059
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1271798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>984142141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6689-4e66eb605cd721cddff67cc1f627231f229cab03476bb1b2abb54940d9ae5c123</originalsourceid><addsrcrecordid>eNqFkc2P0zAUxCMEYsvCnQvI4sAtxXYSO74g0WpZQEtBfIgTsmznZXFJ4mI7C_nvSUjVLkhoT5Y8vxm_50mShwQvCc7KZ2G7hFa77ZIzjHEhbiULkjOcUsyL28kCU0bSnJTiJLkXwnZCSk7uJick55kQWb5Ivr5vVIjW2Dgg2yHojfKDGy8QxR_RzrsIKrgWkLfdJVIhjO81A_JwBaqBCukBKRR63Xc2ogoaiNZ1U9Iw-uL95E6tmgAP9udp8vnl2af1q_Ti3fnr9YuL1DBWijQHxkAzXJiKU2Kqqq4ZN4bUjHKakZpSYZTGWc6Z1kRTpXWRixxXQkFhCM1Ok-dz7q7XLVQGuuhVI3fetuM60ikr_1Y6-01euitJKCdclGPA032Adz96CFG2NhhoGtWB64MsMSkwK8mNIBG0KDGdwCf_gFvX-278hZEpKMsLikcIz5DxLgQP9WFkguXUsAxb-adhuW94tDy-vurRsK90BMQM_LQNDDcGyrO3qzfHcDJ7w27qG_y1of8_0KPZ06nYezg8eNTTWbchwq-DrPx3yXjGC_llcy43-frDasU3ssx-A4bF4B0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195264520</pqid></control><display><type>article</type><title>Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast</title><source>PubMed Central</source><creator>Velichutina, Irina ; Connerly, Pamela L ; Arendt, Cassandra S ; Li, Xia ; Hochstrasser, Mark</creator><creatorcontrib>Velichutina, Irina ; Connerly, Pamela L ; Arendt, Cassandra S ; Li, Xia ; Hochstrasser, Mark</creatorcontrib><description>The 20S proteasome is made up of four stacked heptameric rings, which in eucaryotes assemble from 14 different but related subunits. The rules governing subunit assembly and placement are not understood. We show that a different kind of proteasome forms in yeast when the Pre9/α3 subunit is deleted. Purified pre9Δ proteasomes show a two‐fold enrichment for the Pre6/α4 subunit, consistent with the presence of an extra copy of Pre6 in each outer ring. Based on disulfide engineering and structure‐guided suppressor analyses, Pre6 takes the position normally occupied by Pre9, a substitution that depends on a network of intersubunit salt bridges. When Arabidopsis PAD1/α4 is expressed in yeast, it complements not only pre6 Δ but also pre6 Δ pre9 Δ mutants; therefore, the plant α4 subunit also can occupy multiple positions in a functional yeast proteasome. Importantly, biogenesis of proteasomes is delayed at an early stage in pre9 Δ cells, suggesting an advantage for Pre9 over Pre6 incorporation at the α3 position that facilitates correct assembly.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/sj.emboj.7600059</identifier><identifier>PMID: 14739934</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; EMBO31 ; EMBO40 ; Gene Deletion ; Genetic Complementation Test ; plasticity ; Pre6 gene ; pre6 protein ; Pre9 gene ; pre9 protein ; proteasome ; Proteasome Endopeptidase Complex - genetics ; Proteasome Endopeptidase Complex - metabolism ; proteasomes ; protein assembly ; Protein Subunits - genetics ; Protein Subunits - metabolism ; proteolysis ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; ubiquitin ; Yeasts</subject><ispartof>The EMBO journal, 2004-02, Vol.23 (3), p.500-510</ispartof><rights>European Molecular Biology Organization 2004</rights><rights>Copyright © 2004 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Feb 11, 2004</rights><rights>Copyright © 2004, European Molecular Biology Organization 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6689-4e66eb605cd721cddff67cc1f627231f229cab03476bb1b2abb54940d9ae5c123</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1271798/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1271798/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14739934$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Velichutina, Irina</creatorcontrib><creatorcontrib>Connerly, Pamela L</creatorcontrib><creatorcontrib>Arendt, Cassandra S</creatorcontrib><creatorcontrib>Li, Xia</creatorcontrib><creatorcontrib>Hochstrasser, Mark</creatorcontrib><title>Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The 20S proteasome is made up of four stacked heptameric rings, which in eucaryotes assemble from 14 different but related subunits. The rules governing subunit assembly and placement are not understood. We show that a different kind of proteasome forms in yeast when the Pre9/α3 subunit is deleted. Purified pre9Δ proteasomes show a two‐fold enrichment for the Pre6/α4 subunit, consistent with the presence of an extra copy of Pre6 in each outer ring. Based on disulfide engineering and structure‐guided suppressor analyses, Pre6 takes the position normally occupied by Pre9, a substitution that depends on a network of intersubunit salt bridges. When Arabidopsis PAD1/α4 is expressed in yeast, it complements not only pre6 Δ but also pre6 Δ pre9 Δ mutants; therefore, the plant α4 subunit also can occupy multiple positions in a functional yeast proteasome. Importantly, biogenesis of proteasomes is delayed at an early stage in pre9 Δ cells, suggesting an advantage for Pre9 over Pre6 incorporation at the α3 position that facilitates correct assembly.</description><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>EMBO31</subject><subject>EMBO40</subject><subject>Gene Deletion</subject><subject>Genetic Complementation Test</subject><subject>plasticity</subject><subject>Pre6 gene</subject><subject>pre6 protein</subject><subject>Pre9 gene</subject><subject>pre9 protein</subject><subject>proteasome</subject><subject>Proteasome Endopeptidase Complex - genetics</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>proteasomes</subject><subject>protein assembly</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>proteolysis</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>ubiquitin</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkc2P0zAUxCMEYsvCnQvI4sAtxXYSO74g0WpZQEtBfIgTsmznZXFJ4mI7C_nvSUjVLkhoT5Y8vxm_50mShwQvCc7KZ2G7hFa77ZIzjHEhbiULkjOcUsyL28kCU0bSnJTiJLkXwnZCSk7uJick55kQWb5Ivr5vVIjW2Dgg2yHojfKDGy8QxR_RzrsIKrgWkLfdJVIhjO81A_JwBaqBCukBKRR63Xc2ogoaiNZ1U9Iw-uL95E6tmgAP9udp8vnl2af1q_Ti3fnr9YuL1DBWijQHxkAzXJiKU2Kqqq4ZN4bUjHKakZpSYZTGWc6Z1kRTpXWRixxXQkFhCM1Ok-dz7q7XLVQGuuhVI3fetuM60ikr_1Y6-01euitJKCdclGPA032Adz96CFG2NhhoGtWB64MsMSkwK8mNIBG0KDGdwCf_gFvX-278hZEpKMsLikcIz5DxLgQP9WFkguXUsAxb-adhuW94tDy-vurRsK90BMQM_LQNDDcGyrO3qzfHcDJ7w27qG_y1of8_0KPZ06nYezg8eNTTWbchwq-DrPx3yXjGC_llcy43-frDasU3ssx-A4bF4B0</recordid><startdate>20040211</startdate><enddate>20040211</enddate><creator>Velichutina, Irina</creator><creator>Connerly, Pamela L</creator><creator>Arendt, Cassandra S</creator><creator>Li, Xia</creator><creator>Hochstrasser, Mark</creator><general>John Wiley &amp; Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040211</creationdate><title>Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast</title><author>Velichutina, Irina ; Connerly, Pamela L ; Arendt, Cassandra S ; Li, Xia ; Hochstrasser, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6689-4e66eb605cd721cddff67cc1f627231f229cab03476bb1b2abb54940d9ae5c123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>EMBO31</topic><topic>EMBO40</topic><topic>Gene Deletion</topic><topic>Genetic Complementation Test</topic><topic>plasticity</topic><topic>Pre6 gene</topic><topic>pre6 protein</topic><topic>Pre9 gene</topic><topic>pre9 protein</topic><topic>proteasome</topic><topic>Proteasome Endopeptidase Complex - genetics</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>proteasomes</topic><topic>protein assembly</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>proteolysis</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>ubiquitin</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velichutina, Irina</creatorcontrib><creatorcontrib>Connerly, Pamela L</creatorcontrib><creatorcontrib>Arendt, Cassandra S</creatorcontrib><creatorcontrib>Li, Xia</creatorcontrib><creatorcontrib>Hochstrasser, Mark</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velichutina, Irina</au><au>Connerly, Pamela L</au><au>Arendt, Cassandra S</au><au>Li, Xia</au><au>Hochstrasser, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2004-02-11</date><risdate>2004</risdate><volume>23</volume><issue>3</issue><spage>500</spage><epage>510</epage><pages>500-510</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>The 20S proteasome is made up of four stacked heptameric rings, which in eucaryotes assemble from 14 different but related subunits. The rules governing subunit assembly and placement are not understood. We show that a different kind of proteasome forms in yeast when the Pre9/α3 subunit is deleted. Purified pre9Δ proteasomes show a two‐fold enrichment for the Pre6/α4 subunit, consistent with the presence of an extra copy of Pre6 in each outer ring. Based on disulfide engineering and structure‐guided suppressor analyses, Pre6 takes the position normally occupied by Pre9, a substitution that depends on a network of intersubunit salt bridges. When Arabidopsis PAD1/α4 is expressed in yeast, it complements not only pre6 Δ but also pre6 Δ pre9 Δ mutants; therefore, the plant α4 subunit also can occupy multiple positions in a functional yeast proteasome. Importantly, biogenesis of proteasomes is delayed at an early stage in pre9 Δ cells, suggesting an advantage for Pre9 over Pre6 incorporation at the α3 position that facilitates correct assembly.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>14739934</pmid><doi>10.1038/sj.emboj.7600059</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0261-4189
ispartof The EMBO journal, 2004-02, Vol.23 (3), p.500-510
issn 0261-4189
1460-2075
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1271798
source PubMed Central
subjects Arabidopsis - enzymology
Arabidopsis - genetics
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
EMBO31
EMBO40
Gene Deletion
Genetic Complementation Test
plasticity
Pre6 gene
pre6 protein
Pre9 gene
pre9 protein
proteasome
Proteasome Endopeptidase Complex - genetics
Proteasome Endopeptidase Complex - metabolism
proteasomes
protein assembly
Protein Subunits - genetics
Protein Subunits - metabolism
proteolysis
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
ubiquitin
Yeasts
title Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasticity%20in%20eucaryotic%2020S%20proteasome%20ring%20assembly%20revealed%20by%20a%20subunit%20deletion%20in%20yeast&rft.jtitle=The%20EMBO%20journal&rft.au=Velichutina,%20Irina&rft.date=2004-02-11&rft.volume=23&rft.issue=3&rft.spage=500&rft.epage=510&rft.pages=500-510&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/sj.emboj.7600059&rft_dat=%3Cproquest_pubme%3E984142141%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6689-4e66eb605cd721cddff67cc1f627231f229cab03476bb1b2abb54940d9ae5c123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195264520&rft_id=info:pmid/14739934&rfr_iscdi=true