Loading…
Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast
The 20S proteasome is made up of four stacked heptameric rings, which in eucaryotes assemble from 14 different but related subunits. The rules governing subunit assembly and placement are not understood. We show that a different kind of proteasome forms in yeast when the Pre9/α3 subunit is deleted....
Saved in:
Published in: | The EMBO journal 2004-02, Vol.23 (3), p.500-510 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6689-4e66eb605cd721cddff67cc1f627231f229cab03476bb1b2abb54940d9ae5c123 |
---|---|
cites | |
container_end_page | 510 |
container_issue | 3 |
container_start_page | 500 |
container_title | The EMBO journal |
container_volume | 23 |
creator | Velichutina, Irina Connerly, Pamela L Arendt, Cassandra S Li, Xia Hochstrasser, Mark |
description | The 20S proteasome is made up of four stacked heptameric rings, which in eucaryotes assemble from 14 different but related subunits. The rules governing subunit assembly and placement are not understood. We show that a different kind of proteasome forms in yeast when the Pre9/α3 subunit is deleted. Purified pre9Δ proteasomes show a two‐fold enrichment for the Pre6/α4 subunit, consistent with the presence of an extra copy of Pre6 in each outer ring. Based on disulfide engineering and structure‐guided suppressor analyses, Pre6 takes the position normally occupied by Pre9, a substitution that depends on a network of intersubunit salt bridges. When
Arabidopsis
PAD1/α4 is expressed in yeast, it complements not only
pre6
Δ but also
pre6
Δ
pre9
Δ mutants; therefore, the plant α4 subunit also can occupy multiple positions in a functional yeast proteasome. Importantly, biogenesis of proteasomes is delayed at an early stage in
pre9
Δ cells, suggesting an advantage for Pre9 over Pre6 incorporation at the α3 position that facilitates correct assembly. |
doi_str_mv | 10.1038/sj.emboj.7600059 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1271798</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>984142141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6689-4e66eb605cd721cddff67cc1f627231f229cab03476bb1b2abb54940d9ae5c123</originalsourceid><addsrcrecordid>eNqFkc2P0zAUxCMEYsvCnQvI4sAtxXYSO74g0WpZQEtBfIgTsmznZXFJ4mI7C_nvSUjVLkhoT5Y8vxm_50mShwQvCc7KZ2G7hFa77ZIzjHEhbiULkjOcUsyL28kCU0bSnJTiJLkXwnZCSk7uJick55kQWb5Ivr5vVIjW2Dgg2yHojfKDGy8QxR_RzrsIKrgWkLfdJVIhjO81A_JwBaqBCukBKRR63Xc2ogoaiNZ1U9Iw-uL95E6tmgAP9udp8vnl2af1q_Ti3fnr9YuL1DBWijQHxkAzXJiKU2Kqqq4ZN4bUjHKakZpSYZTGWc6Z1kRTpXWRixxXQkFhCM1Ok-dz7q7XLVQGuuhVI3fetuM60ikr_1Y6-01euitJKCdclGPA032Adz96CFG2NhhoGtWB64MsMSkwK8mNIBG0KDGdwCf_gFvX-278hZEpKMsLikcIz5DxLgQP9WFkguXUsAxb-adhuW94tDy-vurRsK90BMQM_LQNDDcGyrO3qzfHcDJ7w27qG_y1of8_0KPZ06nYezg8eNTTWbchwq-DrPx3yXjGC_llcy43-frDasU3ssx-A4bF4B0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195264520</pqid></control><display><type>article</type><title>Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast</title><source>PubMed Central</source><creator>Velichutina, Irina ; Connerly, Pamela L ; Arendt, Cassandra S ; Li, Xia ; Hochstrasser, Mark</creator><creatorcontrib>Velichutina, Irina ; Connerly, Pamela L ; Arendt, Cassandra S ; Li, Xia ; Hochstrasser, Mark</creatorcontrib><description>The 20S proteasome is made up of four stacked heptameric rings, which in eucaryotes assemble from 14 different but related subunits. The rules governing subunit assembly and placement are not understood. We show that a different kind of proteasome forms in yeast when the Pre9/α3 subunit is deleted. Purified pre9Δ proteasomes show a two‐fold enrichment for the Pre6/α4 subunit, consistent with the presence of an extra copy of Pre6 in each outer ring. Based on disulfide engineering and structure‐guided suppressor analyses, Pre6 takes the position normally occupied by Pre9, a substitution that depends on a network of intersubunit salt bridges. When
Arabidopsis
PAD1/α4 is expressed in yeast, it complements not only
pre6
Δ but also
pre6
Δ
pre9
Δ mutants; therefore, the plant α4 subunit also can occupy multiple positions in a functional yeast proteasome. Importantly, biogenesis of proteasomes is delayed at an early stage in
pre9
Δ cells, suggesting an advantage for Pre9 over Pre6 incorporation at the α3 position that facilitates correct assembly.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/sj.emboj.7600059</identifier><identifier>PMID: 14739934</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; EMBO31 ; EMBO40 ; Gene Deletion ; Genetic Complementation Test ; plasticity ; Pre6 gene ; pre6 protein ; Pre9 gene ; pre9 protein ; proteasome ; Proteasome Endopeptidase Complex - genetics ; Proteasome Endopeptidase Complex - metabolism ; proteasomes ; protein assembly ; Protein Subunits - genetics ; Protein Subunits - metabolism ; proteolysis ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; ubiquitin ; Yeasts</subject><ispartof>The EMBO journal, 2004-02, Vol.23 (3), p.500-510</ispartof><rights>European Molecular Biology Organization 2004</rights><rights>Copyright © 2004 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Feb 11, 2004</rights><rights>Copyright © 2004, European Molecular Biology Organization 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6689-4e66eb605cd721cddff67cc1f627231f229cab03476bb1b2abb54940d9ae5c123</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1271798/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1271798/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14739934$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Velichutina, Irina</creatorcontrib><creatorcontrib>Connerly, Pamela L</creatorcontrib><creatorcontrib>Arendt, Cassandra S</creatorcontrib><creatorcontrib>Li, Xia</creatorcontrib><creatorcontrib>Hochstrasser, Mark</creatorcontrib><title>Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>The 20S proteasome is made up of four stacked heptameric rings, which in eucaryotes assemble from 14 different but related subunits. The rules governing subunit assembly and placement are not understood. We show that a different kind of proteasome forms in yeast when the Pre9/α3 subunit is deleted. Purified pre9Δ proteasomes show a two‐fold enrichment for the Pre6/α4 subunit, consistent with the presence of an extra copy of Pre6 in each outer ring. Based on disulfide engineering and structure‐guided suppressor analyses, Pre6 takes the position normally occupied by Pre9, a substitution that depends on a network of intersubunit salt bridges. When
Arabidopsis
PAD1/α4 is expressed in yeast, it complements not only
pre6
Δ but also
pre6
Δ
pre9
Δ mutants; therefore, the plant α4 subunit also can occupy multiple positions in a functional yeast proteasome. Importantly, biogenesis of proteasomes is delayed at an early stage in
pre9
Δ cells, suggesting an advantage for Pre9 over Pre6 incorporation at the α3 position that facilitates correct assembly.</description><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>EMBO31</subject><subject>EMBO40</subject><subject>Gene Deletion</subject><subject>Genetic Complementation Test</subject><subject>plasticity</subject><subject>Pre6 gene</subject><subject>pre6 protein</subject><subject>Pre9 gene</subject><subject>pre9 protein</subject><subject>proteasome</subject><subject>Proteasome Endopeptidase Complex - genetics</subject><subject>Proteasome Endopeptidase Complex - metabolism</subject><subject>proteasomes</subject><subject>protein assembly</subject><subject>Protein Subunits - genetics</subject><subject>Protein Subunits - metabolism</subject><subject>proteolysis</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>ubiquitin</subject><subject>Yeasts</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNqFkc2P0zAUxCMEYsvCnQvI4sAtxXYSO74g0WpZQEtBfIgTsmznZXFJ4mI7C_nvSUjVLkhoT5Y8vxm_50mShwQvCc7KZ2G7hFa77ZIzjHEhbiULkjOcUsyL28kCU0bSnJTiJLkXwnZCSk7uJick55kQWb5Ivr5vVIjW2Dgg2yHojfKDGy8QxR_RzrsIKrgWkLfdJVIhjO81A_JwBaqBCukBKRR63Xc2ogoaiNZ1U9Iw-uL95E6tmgAP9udp8vnl2af1q_Ti3fnr9YuL1DBWijQHxkAzXJiKU2Kqqq4ZN4bUjHKakZpSYZTGWc6Z1kRTpXWRixxXQkFhCM1Ok-dz7q7XLVQGuuhVI3fetuM60ikr_1Y6-01euitJKCdclGPA032Adz96CFG2NhhoGtWB64MsMSkwK8mNIBG0KDGdwCf_gFvX-278hZEpKMsLikcIz5DxLgQP9WFkguXUsAxb-adhuW94tDy-vurRsK90BMQM_LQNDDcGyrO3qzfHcDJ7w27qG_y1of8_0KPZ06nYezg8eNTTWbchwq-DrPx3yXjGC_llcy43-frDasU3ssx-A4bF4B0</recordid><startdate>20040211</startdate><enddate>20040211</enddate><creator>Velichutina, Irina</creator><creator>Connerly, Pamela L</creator><creator>Arendt, Cassandra S</creator><creator>Li, Xia</creator><creator>Hochstrasser, Mark</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20040211</creationdate><title>Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast</title><author>Velichutina, Irina ; Connerly, Pamela L ; Arendt, Cassandra S ; Li, Xia ; Hochstrasser, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6689-4e66eb605cd721cddff67cc1f627231f229cab03476bb1b2abb54940d9ae5c123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>EMBO31</topic><topic>EMBO40</topic><topic>Gene Deletion</topic><topic>Genetic Complementation Test</topic><topic>plasticity</topic><topic>Pre6 gene</topic><topic>pre6 protein</topic><topic>Pre9 gene</topic><topic>pre9 protein</topic><topic>proteasome</topic><topic>Proteasome Endopeptidase Complex - genetics</topic><topic>Proteasome Endopeptidase Complex - metabolism</topic><topic>proteasomes</topic><topic>protein assembly</topic><topic>Protein Subunits - genetics</topic><topic>Protein Subunits - metabolism</topic><topic>proteolysis</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>ubiquitin</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Velichutina, Irina</creatorcontrib><creatorcontrib>Connerly, Pamela L</creatorcontrib><creatorcontrib>Arendt, Cassandra S</creatorcontrib><creatorcontrib>Li, Xia</creatorcontrib><creatorcontrib>Hochstrasser, Mark</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Velichutina, Irina</au><au>Connerly, Pamela L</au><au>Arendt, Cassandra S</au><au>Li, Xia</au><au>Hochstrasser, Mark</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2004-02-11</date><risdate>2004</risdate><volume>23</volume><issue>3</issue><spage>500</spage><epage>510</epage><pages>500-510</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>The 20S proteasome is made up of four stacked heptameric rings, which in eucaryotes assemble from 14 different but related subunits. The rules governing subunit assembly and placement are not understood. We show that a different kind of proteasome forms in yeast when the Pre9/α3 subunit is deleted. Purified pre9Δ proteasomes show a two‐fold enrichment for the Pre6/α4 subunit, consistent with the presence of an extra copy of Pre6 in each outer ring. Based on disulfide engineering and structure‐guided suppressor analyses, Pre6 takes the position normally occupied by Pre9, a substitution that depends on a network of intersubunit salt bridges. When
Arabidopsis
PAD1/α4 is expressed in yeast, it complements not only
pre6
Δ but also
pre6
Δ
pre9
Δ mutants; therefore, the plant α4 subunit also can occupy multiple positions in a functional yeast proteasome. Importantly, biogenesis of proteasomes is delayed at an early stage in
pre9
Δ cells, suggesting an advantage for Pre9 over Pre6 incorporation at the α3 position that facilitates correct assembly.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>14739934</pmid><doi>10.1038/sj.emboj.7600059</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2004-02, Vol.23 (3), p.500-510 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1271798 |
source | PubMed Central |
subjects | Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism EMBO31 EMBO40 Gene Deletion Genetic Complementation Test plasticity Pre6 gene pre6 protein Pre9 gene pre9 protein proteasome Proteasome Endopeptidase Complex - genetics Proteasome Endopeptidase Complex - metabolism proteasomes protein assembly Protein Subunits - genetics Protein Subunits - metabolism proteolysis Saccharomyces cerevisiae - enzymology Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism ubiquitin Yeasts |
title | Plasticity in eucaryotic 20S proteasome ring assembly revealed by a subunit deletion in yeast |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Plasticity%20in%20eucaryotic%2020S%20proteasome%20ring%20assembly%20revealed%20by%20a%20subunit%20deletion%20in%20yeast&rft.jtitle=The%20EMBO%20journal&rft.au=Velichutina,%20Irina&rft.date=2004-02-11&rft.volume=23&rft.issue=3&rft.spage=500&rft.epage=510&rft.pages=500-510&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/sj.emboj.7600059&rft_dat=%3Cproquest_pubme%3E984142141%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6689-4e66eb605cd721cddff67cc1f627231f229cab03476bb1b2abb54940d9ae5c123%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195264520&rft_id=info:pmid/14739934&rfr_iscdi=true |