Loading…

Dynamics of neutrophil rolling over stimulated endothelium in vitro

Prior to extravasation at sites of acute inflammation, neutrophils roll over activated endothelium. Neutrophil rolling is often characterized by the average rolling velocity. An additional dynamic feature of rolling that has been identified but not extensively studied is the fluctuation in the rolli...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 1994-06, Vol.66 (6), p.2202-2209
Main Authors: Goetz, D.J., el-Sabban, M.E., Pauli, B.U., Hammer, D.A.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Prior to extravasation at sites of acute inflammation, neutrophils roll over activated endothelium. Neutrophil rolling is often characterized by the average rolling velocity. An additional dynamic feature of rolling that has been identified but not extensively studied is the fluctuation in the rolling velocity about the average. To analyze this characteristic further, we have measured the instantaneous velocity of bovine neutrophils interacting with lipopolysaccharide-stimulated bovine aortic endothelium at shear stresses of 1, 2, 3, and 4 dynes/cm2. The average velocities are quantitatively similar to those reported for human neutrophils rolling over reconstituted P-selectin at a surface density of 400 sites/microns 2. At all shear stresses tested, the population average variance in the instantaneous velocity is at least 2 orders of magnitude higher than the theoretical variance generated from experimental error, indicating that the neutrophils translate with a nonconstant velocity. Possible sources of the variance are discussed. These include "macroscopic" sources such as topological heterogeneity in the endothelium and microscopic sources, such as inherent stochastic formation and breakage of the receptor-ligand bonds that mediate the rolling. Regardless of the ultimate source of the variance, these results justify the use of mathematical models that incorporate stochastic processes to describe bond formation and breakage between the neutrophil and the endothelium and hence are able to generate variable velocity trajectories.
ISSN:0006-3495
1542-0086
DOI:10.1016/S0006-3495(94)81016-1