Loading…
Dipole interactions in electrofusion. Contributions of membrane potential and effective dipole interaction pressures
The contributions of pulse-induced dipole-dipole interaction to the total pressure acting normal to the membranes of closely positioned pronase treated human erythrocytes during electrofusion was calculated. The total pressure was modeled as the sum of pressures arising from membrane potential and d...
Saved in:
Published in: | Biophysical journal 1991-05, Vol.59 (5), p.1074-1084 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The contributions of pulse-induced dipole-dipole interaction to the total pressure acting normal to the membranes of closely positioned pronase treated human erythrocytes during electrofusion was calculated. The total pressure was modeled as the sum of pressures arising from membrane potential and dipole-dipole attraction opposed by interbilayer repulsion. The dipole-dipole interaction was derived from the experimentally obtained cell polarizability. The threshold electric field amplitude necessary for fusion of pronase-treated human erythrocytes was experimentally obtained at various combinations of pulse duration, frequency, and the conductivity of the external medium. The theoretical values of the critical electric field amplitude compared favorably to the experimentally obtained threshold field amplitudes. Fusion by dc pulses may be primarily attributed to attainment of sufficiently high membrane potentials. However, with decreasing external conductivity and increasing sinusoidal pulse frequency (100 kHz-2.5 MHz), the induced dipole-dipole interactions provide the principal driving force for membrane failure leading to fusion. |
---|---|
ISSN: | 0006-3495 1542-0086 |
DOI: | 10.1016/S0006-3495(91)82322-0 |