Loading…

Motion of RNA Polymerase along DNA: A Stochastic Model

RNA polymerase is a key transcription enzyme that moves along a DNA double helix to polymerize an RNA transcript. Recent progress in micromechanical experiments permits quantitative studies of forces and motion generated by the enzyme. We present in this paper a chemical kinetics description of RNA...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 1998-03, Vol.74 (3), p.1169-1185
Main Authors: Jülicher, Frank, Bruinsma, Robijn
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c462t-b97260844427743fa615562575431e0bd01f8e661e04f119802cc0a28aa382513
cites cdi_FETCH-LOGICAL-c462t-b97260844427743fa615562575431e0bd01f8e661e04f119802cc0a28aa382513
container_end_page 1185
container_issue 3
container_start_page 1169
container_title Biophysical journal
container_volume 74
creator Jülicher, Frank
Bruinsma, Robijn
description RNA polymerase is a key transcription enzyme that moves along a DNA double helix to polymerize an RNA transcript. Recent progress in micromechanical experiments permits quantitative studies of forces and motion generated by the enzyme. We present in this paper a chemical kinetics description of RNA polymerase motion. The model is based on a classical chemical kinetics description of polymerization reactions driven by a free energy gain that depends on forces applied externally at the catalytic site. The RNA polymerase controlled activation barrier of the reaction is assumed to be strongly dependent on inhibitory internal strains of the RNA polymerase molecule. The sequence sensitivity of RNA polymerase is described by a linear coupling between the height of the activation barrier and the local DNA sequence. Our model can simulate optical trap experiments and allows us to study the dynamics of chemically halted complexes that are important for footprinting studies. We find that the effective stall force is a sequence-dependent, statistical quantity, whose distribution depends on the observation time. The results are consistent with the experimental observations to date.
doi_str_mv 10.1016/S0006-3495(98)77833-6
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1299467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349598778336</els_id><sourcerecordid>79738162</sourcerecordid><originalsourceid>FETCH-LOGICAL-c462t-b97260844427743fa615562575431e0bd01f8e661e04f119802cc0a28aa382513</originalsourceid><addsrcrecordid>eNqFkE1PFEEQhjtGggv6E0jmZPQwUNXTnx4kGwQ1ATSi505vTw20mZ1eumdJ-PcO7GajJ09VyftRlYexI4RjBFQnNwCg6kZY-c6a91qbpqnVCzZDKXgNYNRLNttZXrGDUn4DIJeA-2zfSuSAesbUVRpjGqrUVT-u59X31D8uKftCle_TcFt9up5_qObVzZjCnS9jDNVVaql_zfY63xd6s52H7NfF-c-zL_Xlt89fz-aXdRCKj_XCaq7ACCG41qLpvEIpFZdaigYJFi1gZ0ipaRcdojXAQwDPjfeN4RKbQ_Zx07taL5bUBhrG7Hu3ynHp86NLPrp_lSHeudv04JBbK5SeCt5uC3K6X1MZ3TKWQH3vB0rr4rTVjUHFJ6PcGENOpWTqdkcQ3BNw9wzcPdF01rhn4E5NuaO_P9yltoQn_XSj04TpIVJ2JUQaArUxUxhdm-J_LvwBUOCNUQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>79738162</pqid></control><display><type>article</type><title>Motion of RNA Polymerase along DNA: A Stochastic Model</title><source>PubMed Central</source><creator>Jülicher, Frank ; Bruinsma, Robijn</creator><creatorcontrib>Jülicher, Frank ; Bruinsma, Robijn</creatorcontrib><description>RNA polymerase is a key transcription enzyme that moves along a DNA double helix to polymerize an RNA transcript. Recent progress in micromechanical experiments permits quantitative studies of forces and motion generated by the enzyme. We present in this paper a chemical kinetics description of RNA polymerase motion. The model is based on a classical chemical kinetics description of polymerization reactions driven by a free energy gain that depends on forces applied externally at the catalytic site. The RNA polymerase controlled activation barrier of the reaction is assumed to be strongly dependent on inhibitory internal strains of the RNA polymerase molecule. The sequence sensitivity of RNA polymerase is described by a linear coupling between the height of the activation barrier and the local DNA sequence. Our model can simulate optical trap experiments and allows us to study the dynamics of chemically halted complexes that are important for footprinting studies. We find that the effective stall force is a sequence-dependent, statistical quantity, whose distribution depends on the observation time. The results are consistent with the experimental observations to date.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(98)77833-6</identifier><identifier>PMID: 9512017</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Base Sequence ; DNA - chemistry ; DNA - metabolism ; DNA-Directed RNA Polymerases - chemistry ; DNA-Directed RNA Polymerases - metabolism ; Kinetics ; Markov Chains ; Models, Chemical ; Models, Molecular ; Molecular Sequence Data ; Nucleic Acid Conformation ; RNA - biosynthesis ; RNA - chemistry ; Stochastic Processes ; Transcription, Genetic</subject><ispartof>Biophysical journal, 1998-03, Vol.74 (3), p.1169-1185</ispartof><rights>1998 The Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c462t-b97260844427743fa615562575431e0bd01f8e661e04f119802cc0a28aa382513</citedby><cites>FETCH-LOGICAL-c462t-b97260844427743fa615562575431e0bd01f8e661e04f119802cc0a28aa382513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299467/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299467/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9512017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jülicher, Frank</creatorcontrib><creatorcontrib>Bruinsma, Robijn</creatorcontrib><title>Motion of RNA Polymerase along DNA: A Stochastic Model</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>RNA polymerase is a key transcription enzyme that moves along a DNA double helix to polymerize an RNA transcript. Recent progress in micromechanical experiments permits quantitative studies of forces and motion generated by the enzyme. We present in this paper a chemical kinetics description of RNA polymerase motion. The model is based on a classical chemical kinetics description of polymerization reactions driven by a free energy gain that depends on forces applied externally at the catalytic site. The RNA polymerase controlled activation barrier of the reaction is assumed to be strongly dependent on inhibitory internal strains of the RNA polymerase molecule. The sequence sensitivity of RNA polymerase is described by a linear coupling between the height of the activation barrier and the local DNA sequence. Our model can simulate optical trap experiments and allows us to study the dynamics of chemically halted complexes that are important for footprinting studies. We find that the effective stall force is a sequence-dependent, statistical quantity, whose distribution depends on the observation time. The results are consistent with the experimental observations to date.</description><subject>Base Sequence</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA-Directed RNA Polymerases - chemistry</subject><subject>DNA-Directed RNA Polymerases - metabolism</subject><subject>Kinetics</subject><subject>Markov Chains</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Nucleic Acid Conformation</subject><subject>RNA - biosynthesis</subject><subject>RNA - chemistry</subject><subject>Stochastic Processes</subject><subject>Transcription, Genetic</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PFEEQhjtGggv6E0jmZPQwUNXTnx4kGwQ1ATSi505vTw20mZ1eumdJ-PcO7GajJ09VyftRlYexI4RjBFQnNwCg6kZY-c6a91qbpqnVCzZDKXgNYNRLNttZXrGDUn4DIJeA-2zfSuSAesbUVRpjGqrUVT-u59X31D8uKftCle_TcFt9up5_qObVzZjCnS9jDNVVaql_zfY63xd6s52H7NfF-c-zL_Xlt89fz-aXdRCKj_XCaq7ACCG41qLpvEIpFZdaigYJFi1gZ0ipaRcdojXAQwDPjfeN4RKbQ_Zx07taL5bUBhrG7Hu3ynHp86NLPrp_lSHeudv04JBbK5SeCt5uC3K6X1MZ3TKWQH3vB0rr4rTVjUHFJ6PcGENOpWTqdkcQ3BNw9wzcPdF01rhn4E5NuaO_P9yltoQn_XSj04TpIVJ2JUQaArUxUxhdm-J_LvwBUOCNUQ</recordid><startdate>19980301</startdate><enddate>19980301</enddate><creator>Jülicher, Frank</creator><creator>Bruinsma, Robijn</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19980301</creationdate><title>Motion of RNA Polymerase along DNA: A Stochastic Model</title><author>Jülicher, Frank ; Bruinsma, Robijn</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c462t-b97260844427743fa615562575431e0bd01f8e661e04f119802cc0a28aa382513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Base Sequence</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA-Directed RNA Polymerases - chemistry</topic><topic>DNA-Directed RNA Polymerases - metabolism</topic><topic>Kinetics</topic><topic>Markov Chains</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Nucleic Acid Conformation</topic><topic>RNA - biosynthesis</topic><topic>RNA - chemistry</topic><topic>Stochastic Processes</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jülicher, Frank</creatorcontrib><creatorcontrib>Bruinsma, Robijn</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jülicher, Frank</au><au>Bruinsma, Robijn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Motion of RNA Polymerase along DNA: A Stochastic Model</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1998-03-01</date><risdate>1998</risdate><volume>74</volume><issue>3</issue><spage>1169</spage><epage>1185</epage><pages>1169-1185</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>RNA polymerase is a key transcription enzyme that moves along a DNA double helix to polymerize an RNA transcript. Recent progress in micromechanical experiments permits quantitative studies of forces and motion generated by the enzyme. We present in this paper a chemical kinetics description of RNA polymerase motion. The model is based on a classical chemical kinetics description of polymerization reactions driven by a free energy gain that depends on forces applied externally at the catalytic site. The RNA polymerase controlled activation barrier of the reaction is assumed to be strongly dependent on inhibitory internal strains of the RNA polymerase molecule. The sequence sensitivity of RNA polymerase is described by a linear coupling between the height of the activation barrier and the local DNA sequence. Our model can simulate optical trap experiments and allows us to study the dynamics of chemically halted complexes that are important for footprinting studies. We find that the effective stall force is a sequence-dependent, statistical quantity, whose distribution depends on the observation time. The results are consistent with the experimental observations to date.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9512017</pmid><doi>10.1016/S0006-3495(98)77833-6</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 1998-03, Vol.74 (3), p.1169-1185
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1299467
source PubMed Central
subjects Base Sequence
DNA - chemistry
DNA - metabolism
DNA-Directed RNA Polymerases - chemistry
DNA-Directed RNA Polymerases - metabolism
Kinetics
Markov Chains
Models, Chemical
Models, Molecular
Molecular Sequence Data
Nucleic Acid Conformation
RNA - biosynthesis
RNA - chemistry
Stochastic Processes
Transcription, Genetic
title Motion of RNA Polymerase along DNA: A Stochastic Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A45%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Motion%20of%20RNA%20Polymerase%20along%20DNA:%20A%20Stochastic%20Model&rft.jtitle=Biophysical%20journal&rft.au=J%C3%BClicher,%20Frank&rft.date=1998-03-01&rft.volume=74&rft.issue=3&rft.spage=1169&rft.epage=1185&rft.pages=1169-1185&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(98)77833-6&rft_dat=%3Cproquest_pubme%3E79738162%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c462t-b97260844427743fa615562575431e0bd01f8e661e04f119802cc0a28aa382513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=79738162&rft_id=info:pmid/9512017&rfr_iscdi=true