Loading…
Antifreeze Proteins Bind Independently to Ice
It has been suggested that cooperative interactions between antifreeze proteins (AFPs) on the ice surfaces are required for complete inhibition of ice crystal growth. To test this hypothesis, a 7-kDa type III AFP was linked through its N-terminus to thioredoxin (12 kDa) or maltose-binding protein (4...
Saved in:
Published in: | Biophysical journal 1998-03, Vol.74 (3), p.1502-1508 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | It has been suggested that cooperative interactions between antifreeze proteins (AFPs) on the ice surfaces are required for complete inhibition of ice crystal growth. To test this hypothesis, a 7-kDa type III AFP was linked through its N-terminus to thioredoxin (12
kDa) or maltose-binding protein (42
kDa). The resultant 20-kDa and 50-kDa fusion proteins were larger in diameter than free AFP and thus precluded any extensive AFP-AFP contacts on the ice surface. Both fusion proteins were at least as active as free AFP at virtually all concentrations tested. By these criteria, AFPs function independently of each other and do not require specific intermolecular interactions to bind tightly to ice. |
---|---|
ISSN: | 0006-3495 1542-0086 |
DOI: | 10.1016/S0006-3495(98)77862-2 |