Loading…

A Lattice Model for Computing the Transmissivity of the Cornea and Sclera

The method of photonic band structure is used to calculate the frequencies of light that propagate in lattice models of the cornea and sclera of the mammalian eye, providing an explanation for transparency in the cornea that first properly accounts for multiple scattering of light. Each eye tissue i...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 1998-11, Vol.75 (5), p.2520-2531
Main Authors: Ameen, David B., Bishop, Marilyn F., McMullen, Tom
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c528t-97032042d817f370e4f38d01e466aeade62b2916a631382508e36b45793d9d343
cites cdi_FETCH-LOGICAL-c528t-97032042d817f370e4f38d01e466aeade62b2916a631382508e36b45793d9d343
container_end_page 2531
container_issue 5
container_start_page 2520
container_title Biophysical journal
container_volume 75
creator Ameen, David B.
Bishop, Marilyn F.
McMullen, Tom
description The method of photonic band structure is used to calculate the frequencies of light that propagate in lattice models of the cornea and sclera of the mammalian eye, providing an explanation for transparency in the cornea that first properly accounts for multiple scattering of light. Each eye tissue is modeled as an ordered array of collagen rods, and photonic band structure methods are used to solve Maxwell's equations exactly for these models, a procedure that automatically effectively includes all orders of multiple scattering. These calculations show that the dispersion relation for the cornea is linear in the visible range, implying that the cornea is transparent. We show that the transmissivity is ∼97% by using an effective medium approximation derived from the photonic band structure results and applicable in the visible region. In contrast, the dispersion relation for the model in the sclera is not linear in the visible region, and there are band gaps in this region that could play an important role in the transmission of light in the sclera.
doi_str_mv 10.1016/S0006-3495(98)77697-0
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1299927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349598776970</els_id><sourcerecordid>70006272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-97032042d817f370e4f38d01e466aeade62b2916a631382508e36b45793d9d343</originalsourceid><addsrcrecordid>eNqFUctqHDEQFCHB2dj5BINOIT5M0pJm9LgkmCUPwwYf7JyFVuqxFWZHG0m74L_37IMlPuXU0FVd3V1FyCWDTwyY_HwHALIRrek-Gn2llDSqgVdkxrqWNwBaviazE-UteVfKHwDGO2Bn5MworU2rZ-Tmmi5crdEj_ZUCDrRPmc7Tar2pcXyg9RHpfXZjWcVS4jbWJ5r6fXee8oiOujHQOz9gdhfkTe-Ggu-P9Zz8_v7tfv6zWdz-uJlfLxrfcV0bo0BwaHnQTPVCAba90AEYtlI6dAElX3LDpJOCCT2dq1HIZdspI4IJohXn5MtBd71ZrjB4HGt2g13nuHL5ySYX7UtkjI_2IW0t48YYriaBD0eBnP5usFQ7PedxGNyIaVOs2rnGFZ-I3YHocyolY39awsDuMrD7DOzOYGu03WdgYZq7_PfC09TR9An_esBxsmkbMdviI44eQ8zoqw0p_mfDMzM-ld8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70006272</pqid></control><display><type>article</type><title>A Lattice Model for Computing the Transmissivity of the Cornea and Sclera</title><source>Open Access: PubMed Central</source><creator>Ameen, David B. ; Bishop, Marilyn F. ; McMullen, Tom</creator><creatorcontrib>Ameen, David B. ; Bishop, Marilyn F. ; McMullen, Tom</creatorcontrib><description>The method of photonic band structure is used to calculate the frequencies of light that propagate in lattice models of the cornea and sclera of the mammalian eye, providing an explanation for transparency in the cornea that first properly accounts for multiple scattering of light. Each eye tissue is modeled as an ordered array of collagen rods, and photonic band structure methods are used to solve Maxwell's equations exactly for these models, a procedure that automatically effectively includes all orders of multiple scattering. These calculations show that the dispersion relation for the cornea is linear in the visible range, implying that the cornea is transparent. We show that the transmissivity is ∼97% by using an effective medium approximation derived from the photonic band structure results and applicable in the visible region. In contrast, the dispersion relation for the model in the sclera is not linear in the visible region, and there are band gaps in this region that could play an important role in the transmission of light in the sclera.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(98)77697-0</identifier><identifier>PMID: 9788948</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Collagen - ultrastructure ; Cornea - physiology ; Cornea - ultrastructure ; Eye - anatomy &amp; histology ; Light ; Mammals ; Models, Biological ; Ocular Physiological Phenomena ; Scattering, Radiation ; Sclera - physiology ; Sclera - ultrastructure</subject><ispartof>Biophysical journal, 1998-11, Vol.75 (5), p.2520-2531</ispartof><rights>1998 The Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-97032042d817f370e4f38d01e466aeade62b2916a631382508e36b45793d9d343</citedby><cites>FETCH-LOGICAL-c528t-97032042d817f370e4f38d01e466aeade62b2916a631382508e36b45793d9d343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299927/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299927/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9788948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ameen, David B.</creatorcontrib><creatorcontrib>Bishop, Marilyn F.</creatorcontrib><creatorcontrib>McMullen, Tom</creatorcontrib><title>A Lattice Model for Computing the Transmissivity of the Cornea and Sclera</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The method of photonic band structure is used to calculate the frequencies of light that propagate in lattice models of the cornea and sclera of the mammalian eye, providing an explanation for transparency in the cornea that first properly accounts for multiple scattering of light. Each eye tissue is modeled as an ordered array of collagen rods, and photonic band structure methods are used to solve Maxwell's equations exactly for these models, a procedure that automatically effectively includes all orders of multiple scattering. These calculations show that the dispersion relation for the cornea is linear in the visible range, implying that the cornea is transparent. We show that the transmissivity is ∼97% by using an effective medium approximation derived from the photonic band structure results and applicable in the visible region. In contrast, the dispersion relation for the model in the sclera is not linear in the visible region, and there are band gaps in this region that could play an important role in the transmission of light in the sclera.</description><subject>Animals</subject><subject>Collagen - ultrastructure</subject><subject>Cornea - physiology</subject><subject>Cornea - ultrastructure</subject><subject>Eye - anatomy &amp; histology</subject><subject>Light</subject><subject>Mammals</subject><subject>Models, Biological</subject><subject>Ocular Physiological Phenomena</subject><subject>Scattering, Radiation</subject><subject>Sclera - physiology</subject><subject>Sclera - ultrastructure</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFUctqHDEQFCHB2dj5BINOIT5M0pJm9LgkmCUPwwYf7JyFVuqxFWZHG0m74L_37IMlPuXU0FVd3V1FyCWDTwyY_HwHALIRrek-Gn2llDSqgVdkxrqWNwBaviazE-UteVfKHwDGO2Bn5MworU2rZ-Tmmi5crdEj_ZUCDrRPmc7Tar2pcXyg9RHpfXZjWcVS4jbWJ5r6fXee8oiOujHQOz9gdhfkTe-Ggu-P9Zz8_v7tfv6zWdz-uJlfLxrfcV0bo0BwaHnQTPVCAba90AEYtlI6dAElX3LDpJOCCT2dq1HIZdspI4IJohXn5MtBd71ZrjB4HGt2g13nuHL5ySYX7UtkjI_2IW0t48YYriaBD0eBnP5usFQ7PedxGNyIaVOs2rnGFZ-I3YHocyolY39awsDuMrD7DOzOYGu03WdgYZq7_PfC09TR9An_esBxsmkbMdviI44eQ8zoqw0p_mfDMzM-ld8</recordid><startdate>19981101</startdate><enddate>19981101</enddate><creator>Ameen, David B.</creator><creator>Bishop, Marilyn F.</creator><creator>McMullen, Tom</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19981101</creationdate><title>A Lattice Model for Computing the Transmissivity of the Cornea and Sclera</title><author>Ameen, David B. ; Bishop, Marilyn F. ; McMullen, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-97032042d817f370e4f38d01e466aeade62b2916a631382508e36b45793d9d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Collagen - ultrastructure</topic><topic>Cornea - physiology</topic><topic>Cornea - ultrastructure</topic><topic>Eye - anatomy &amp; histology</topic><topic>Light</topic><topic>Mammals</topic><topic>Models, Biological</topic><topic>Ocular Physiological Phenomena</topic><topic>Scattering, Radiation</topic><topic>Sclera - physiology</topic><topic>Sclera - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ameen, David B.</creatorcontrib><creatorcontrib>Bishop, Marilyn F.</creatorcontrib><creatorcontrib>McMullen, Tom</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ameen, David B.</au><au>Bishop, Marilyn F.</au><au>McMullen, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lattice Model for Computing the Transmissivity of the Cornea and Sclera</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1998-11-01</date><risdate>1998</risdate><volume>75</volume><issue>5</issue><spage>2520</spage><epage>2531</epage><pages>2520-2531</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The method of photonic band structure is used to calculate the frequencies of light that propagate in lattice models of the cornea and sclera of the mammalian eye, providing an explanation for transparency in the cornea that first properly accounts for multiple scattering of light. Each eye tissue is modeled as an ordered array of collagen rods, and photonic band structure methods are used to solve Maxwell's equations exactly for these models, a procedure that automatically effectively includes all orders of multiple scattering. These calculations show that the dispersion relation for the cornea is linear in the visible range, implying that the cornea is transparent. We show that the transmissivity is ∼97% by using an effective medium approximation derived from the photonic band structure results and applicable in the visible region. In contrast, the dispersion relation for the model in the sclera is not linear in the visible region, and there are band gaps in this region that could play an important role in the transmission of light in the sclera.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9788948</pmid><doi>10.1016/S0006-3495(98)77697-0</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 1998-11, Vol.75 (5), p.2520-2531
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1299927
source Open Access: PubMed Central
subjects Animals
Collagen - ultrastructure
Cornea - physiology
Cornea - ultrastructure
Eye - anatomy & histology
Light
Mammals
Models, Biological
Ocular Physiological Phenomena
Scattering, Radiation
Sclera - physiology
Sclera - ultrastructure
title A Lattice Model for Computing the Transmissivity of the Cornea and Sclera
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lattice%20Model%20for%20Computing%20the%20Transmissivity%20of%20the%20Cornea%20and%20Sclera&rft.jtitle=Biophysical%20journal&rft.au=Ameen,%20David%20B.&rft.date=1998-11-01&rft.volume=75&rft.issue=5&rft.spage=2520&rft.epage=2531&rft.pages=2520-2531&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(98)77697-0&rft_dat=%3Cproquest_pubme%3E70006272%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-97032042d817f370e4f38d01e466aeade62b2916a631382508e36b45793d9d343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70006272&rft_id=info:pmid/9788948&rfr_iscdi=true