Loading…
A Lattice Model for Computing the Transmissivity of the Cornea and Sclera
The method of photonic band structure is used to calculate the frequencies of light that propagate in lattice models of the cornea and sclera of the mammalian eye, providing an explanation for transparency in the cornea that first properly accounts for multiple scattering of light. Each eye tissue i...
Saved in:
Published in: | Biophysical journal 1998-11, Vol.75 (5), p.2520-2531 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c528t-97032042d817f370e4f38d01e466aeade62b2916a631382508e36b45793d9d343 |
---|---|
cites | cdi_FETCH-LOGICAL-c528t-97032042d817f370e4f38d01e466aeade62b2916a631382508e36b45793d9d343 |
container_end_page | 2531 |
container_issue | 5 |
container_start_page | 2520 |
container_title | Biophysical journal |
container_volume | 75 |
creator | Ameen, David B. Bishop, Marilyn F. McMullen, Tom |
description | The method of photonic band structure is used to calculate the frequencies of light that propagate in lattice models of the cornea and sclera of the mammalian eye, providing an explanation for transparency in the cornea that first properly accounts for multiple scattering of light. Each eye tissue is modeled as an ordered array of collagen rods, and photonic band structure methods are used to solve Maxwell's equations exactly for these models, a procedure that automatically effectively includes all orders of multiple scattering. These calculations show that the dispersion relation for the cornea is linear in the visible range, implying that the cornea is transparent. We show that the transmissivity is ∼97% by using an effective medium approximation derived from the photonic band structure results and applicable in the visible region. In contrast, the dispersion relation for the model in the sclera is not linear in the visible region, and there are band gaps in this region that could play an important role in the transmission of light in the sclera. |
doi_str_mv | 10.1016/S0006-3495(98)77697-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1299927</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349598776970</els_id><sourcerecordid>70006272</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-97032042d817f370e4f38d01e466aeade62b2916a631382508e36b45793d9d343</originalsourceid><addsrcrecordid>eNqFUctqHDEQFCHB2dj5BINOIT5M0pJm9LgkmCUPwwYf7JyFVuqxFWZHG0m74L_37IMlPuXU0FVd3V1FyCWDTwyY_HwHALIRrek-Gn2llDSqgVdkxrqWNwBaviazE-UteVfKHwDGO2Bn5MworU2rZ-Tmmi5crdEj_ZUCDrRPmc7Tar2pcXyg9RHpfXZjWcVS4jbWJ5r6fXee8oiOujHQOz9gdhfkTe-Ggu-P9Zz8_v7tfv6zWdz-uJlfLxrfcV0bo0BwaHnQTPVCAba90AEYtlI6dAElX3LDpJOCCT2dq1HIZdspI4IJohXn5MtBd71ZrjB4HGt2g13nuHL5ySYX7UtkjI_2IW0t48YYriaBD0eBnP5usFQ7PedxGNyIaVOs2rnGFZ-I3YHocyolY39awsDuMrD7DOzOYGu03WdgYZq7_PfC09TR9An_esBxsmkbMdviI44eQ8zoqw0p_mfDMzM-ld8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>70006272</pqid></control><display><type>article</type><title>A Lattice Model for Computing the Transmissivity of the Cornea and Sclera</title><source>Open Access: PubMed Central</source><creator>Ameen, David B. ; Bishop, Marilyn F. ; McMullen, Tom</creator><creatorcontrib>Ameen, David B. ; Bishop, Marilyn F. ; McMullen, Tom</creatorcontrib><description>The method of photonic band structure is used to calculate the frequencies of light that propagate in lattice models of the cornea and sclera of the mammalian eye, providing an explanation for transparency in the cornea that first properly accounts for multiple scattering of light. Each eye tissue is modeled as an ordered array of collagen rods, and photonic band structure methods are used to solve Maxwell's equations exactly for these models, a procedure that automatically effectively includes all orders of multiple scattering. These calculations show that the dispersion relation for the cornea is linear in the visible range, implying that the cornea is transparent. We show that the transmissivity is ∼97% by using an effective medium approximation derived from the photonic band structure results and applicable in the visible region. In contrast, the dispersion relation for the model in the sclera is not linear in the visible region, and there are band gaps in this region that could play an important role in the transmission of light in the sclera.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(98)77697-0</identifier><identifier>PMID: 9788948</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Collagen - ultrastructure ; Cornea - physiology ; Cornea - ultrastructure ; Eye - anatomy & histology ; Light ; Mammals ; Models, Biological ; Ocular Physiological Phenomena ; Scattering, Radiation ; Sclera - physiology ; Sclera - ultrastructure</subject><ispartof>Biophysical journal, 1998-11, Vol.75 (5), p.2520-2531</ispartof><rights>1998 The Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-97032042d817f370e4f38d01e466aeade62b2916a631382508e36b45793d9d343</citedby><cites>FETCH-LOGICAL-c528t-97032042d817f370e4f38d01e466aeade62b2916a631382508e36b45793d9d343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299927/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299927/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9788948$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ameen, David B.</creatorcontrib><creatorcontrib>Bishop, Marilyn F.</creatorcontrib><creatorcontrib>McMullen, Tom</creatorcontrib><title>A Lattice Model for Computing the Transmissivity of the Cornea and Sclera</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>The method of photonic band structure is used to calculate the frequencies of light that propagate in lattice models of the cornea and sclera of the mammalian eye, providing an explanation for transparency in the cornea that first properly accounts for multiple scattering of light. Each eye tissue is modeled as an ordered array of collagen rods, and photonic band structure methods are used to solve Maxwell's equations exactly for these models, a procedure that automatically effectively includes all orders of multiple scattering. These calculations show that the dispersion relation for the cornea is linear in the visible range, implying that the cornea is transparent. We show that the transmissivity is ∼97% by using an effective medium approximation derived from the photonic band structure results and applicable in the visible region. In contrast, the dispersion relation for the model in the sclera is not linear in the visible region, and there are band gaps in this region that could play an important role in the transmission of light in the sclera.</description><subject>Animals</subject><subject>Collagen - ultrastructure</subject><subject>Cornea - physiology</subject><subject>Cornea - ultrastructure</subject><subject>Eye - anatomy & histology</subject><subject>Light</subject><subject>Mammals</subject><subject>Models, Biological</subject><subject>Ocular Physiological Phenomena</subject><subject>Scattering, Radiation</subject><subject>Sclera - physiology</subject><subject>Sclera - ultrastructure</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFUctqHDEQFCHB2dj5BINOIT5M0pJm9LgkmCUPwwYf7JyFVuqxFWZHG0m74L_37IMlPuXU0FVd3V1FyCWDTwyY_HwHALIRrek-Gn2llDSqgVdkxrqWNwBaviazE-UteVfKHwDGO2Bn5MworU2rZ-Tmmi5crdEj_ZUCDrRPmc7Tar2pcXyg9RHpfXZjWcVS4jbWJ5r6fXee8oiOujHQOz9gdhfkTe-Ggu-P9Zz8_v7tfv6zWdz-uJlfLxrfcV0bo0BwaHnQTPVCAba90AEYtlI6dAElX3LDpJOCCT2dq1HIZdspI4IJohXn5MtBd71ZrjB4HGt2g13nuHL5ySYX7UtkjI_2IW0t48YYriaBD0eBnP5usFQ7PedxGNyIaVOs2rnGFZ-I3YHocyolY39awsDuMrD7DOzOYGu03WdgYZq7_PfC09TR9An_esBxsmkbMdviI44eQ8zoqw0p_mfDMzM-ld8</recordid><startdate>19981101</startdate><enddate>19981101</enddate><creator>Ameen, David B.</creator><creator>Bishop, Marilyn F.</creator><creator>McMullen, Tom</creator><general>Elsevier Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>19981101</creationdate><title>A Lattice Model for Computing the Transmissivity of the Cornea and Sclera</title><author>Ameen, David B. ; Bishop, Marilyn F. ; McMullen, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-97032042d817f370e4f38d01e466aeade62b2916a631382508e36b45793d9d343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>Animals</topic><topic>Collagen - ultrastructure</topic><topic>Cornea - physiology</topic><topic>Cornea - ultrastructure</topic><topic>Eye - anatomy & histology</topic><topic>Light</topic><topic>Mammals</topic><topic>Models, Biological</topic><topic>Ocular Physiological Phenomena</topic><topic>Scattering, Radiation</topic><topic>Sclera - physiology</topic><topic>Sclera - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ameen, David B.</creatorcontrib><creatorcontrib>Bishop, Marilyn F.</creatorcontrib><creatorcontrib>McMullen, Tom</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ameen, David B.</au><au>Bishop, Marilyn F.</au><au>McMullen, Tom</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Lattice Model for Computing the Transmissivity of the Cornea and Sclera</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>1998-11-01</date><risdate>1998</risdate><volume>75</volume><issue>5</issue><spage>2520</spage><epage>2531</epage><pages>2520-2531</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>The method of photonic band structure is used to calculate the frequencies of light that propagate in lattice models of the cornea and sclera of the mammalian eye, providing an explanation for transparency in the cornea that first properly accounts for multiple scattering of light. Each eye tissue is modeled as an ordered array of collagen rods, and photonic band structure methods are used to solve Maxwell's equations exactly for these models, a procedure that automatically effectively includes all orders of multiple scattering. These calculations show that the dispersion relation for the cornea is linear in the visible range, implying that the cornea is transparent. We show that the transmissivity is ∼97% by using an effective medium approximation derived from the photonic band structure results and applicable in the visible region. In contrast, the dispersion relation for the model in the sclera is not linear in the visible region, and there are band gaps in this region that could play an important role in the transmission of light in the sclera.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>9788948</pmid><doi>10.1016/S0006-3495(98)77697-0</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 1998-11, Vol.75 (5), p.2520-2531 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1299927 |
source | Open Access: PubMed Central |
subjects | Animals Collagen - ultrastructure Cornea - physiology Cornea - ultrastructure Eye - anatomy & histology Light Mammals Models, Biological Ocular Physiological Phenomena Scattering, Radiation Sclera - physiology Sclera - ultrastructure |
title | A Lattice Model for Computing the Transmissivity of the Cornea and Sclera |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A23%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Lattice%20Model%20for%20Computing%20the%20Transmissivity%20of%20the%20Cornea%20and%20Sclera&rft.jtitle=Biophysical%20journal&rft.au=Ameen,%20David%20B.&rft.date=1998-11-01&rft.volume=75&rft.issue=5&rft.spage=2520&rft.epage=2531&rft.pages=2520-2531&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(98)77697-0&rft_dat=%3Cproquest_pubme%3E70006272%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-97032042d817f370e4f38d01e466aeade62b2916a631382508e36b45793d9d343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=70006272&rft_id=info:pmid/9788948&rfr_iscdi=true |