Loading…
Molecular Dynamics Simulation of Dipalmitoylphosphatidylcholine Membrane with Cholesterol Sulfate
Using the molecular dynamics simulation technique, we studied the changes occurring in a dipalmitoylphosphatidylcholine (DPPC):cholesterol (CH) membrane at 50 mol% sterol when cholesterol is replaced with cholesterol sulfate (CS). Our simulations were performed at constant pressure and temperature o...
Saved in:
Published in: | Biophysical journal 2000-04, Vol.78 (4), p.1672-1680 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c490t-eb201a13df49359a26665fa1ef78752400cddb518c1dcd3274f892926ef9116c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c490t-eb201a13df49359a26665fa1ef78752400cddb518c1dcd3274f892926ef9116c3 |
container_end_page | 1680 |
container_issue | 4 |
container_start_page | 1672 |
container_title | Biophysical journal |
container_volume | 78 |
creator | Smondyrev, Alexander M. Berkowitz, Max L. |
description | Using the molecular dynamics simulation technique, we studied the changes occurring in a dipalmitoylphosphatidylcholine (DPPC):cholesterol (CH) membrane at 50 mol% sterol when cholesterol is replaced with cholesterol sulfate (CS). Our simulations were performed at constant pressure and temperature on a nanosecond time scale. We found that 1) the area per DPPC:CS heterodimer is greater than the area of the DPPC:CH heterodimer; 2) CS increases ordering of DPPC acyl chains, but to a lesser extent than CH; 3) the number of hydrogen bonds between DPPC and water is decreased in a CS-containing membrane, but CS forms more water hydrogen bonds than CH; and 4) the membrane dipole potential reverses its sign for a DPPC-CS membrane compared to a DPPC-CH bilayer. We also studied the changes occurring in lipid headgroup conformations and determined the location of CS molecules in the membrane. Our results are in good agreement with the data available from experiments. |
doi_str_mv | 10.1016/S0006-3495(00)76719-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1300764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349500767191</els_id><sourcerecordid>52471440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-eb201a13df49359a26665fa1ef78752400cddb518c1dcd3274f892926ef9116c3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS1ERZeFnwCKOCA4BGac2I4vILSlLVIrDgtny-s4xJUTp3ZStP8et1tVhQsnWzOf38zzI-QVwgcE5B-3AMDLqpbsHcB7wQXKEp-QFbKalgANf0pWD8gxeZ7SFQBSBviMHCOIqpIMVkRfBm_N4nUsTvajHpxJxdYNuTC7MBahK07cpP3g5rD3Ux_S1OdOu_emD96Ntri0wy7qfPnt5r7Y5KpNs43BF9vFd3q2L8hRp32yL-_PNfl5-vXH5ry8-H72bfPlojS1hLm0OwqosWq7WlZMaso5Z51G24lGMFoDmLbdMWwMtqatqKi7RlJJue0kIjfVmnw66E7LbrCtseMctVdTdIOOexW0U393RterX-FGYQUgeJ0F3t4LxHC9ZBdqcMlY77O7sCQlQEqBlczgm3_Aq7DEMZtTFJmgwGiTIXaATAwpRds9bIKgbhNUdwmq23gUgLpLMO-yJq8f23j06hBZBj4fAJs_88bZqJJxdjS2ddGaWbXB_WfEH_2mrVY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215720528</pqid></control><display><type>article</type><title>Molecular Dynamics Simulation of Dipalmitoylphosphatidylcholine Membrane with Cholesterol Sulfate</title><source>PubMed Central</source><creator>Smondyrev, Alexander M. ; Berkowitz, Max L.</creator><creatorcontrib>Smondyrev, Alexander M. ; Berkowitz, Max L.</creatorcontrib><description>Using the molecular dynamics simulation technique, we studied the changes occurring in a dipalmitoylphosphatidylcholine (DPPC):cholesterol (CH) membrane at 50 mol% sterol when cholesterol is replaced with cholesterol sulfate (CS). Our simulations were performed at constant pressure and temperature on a nanosecond time scale. We found that 1) the area per DPPC:CS heterodimer is greater than the area of the DPPC:CH heterodimer; 2) CS increases ordering of DPPC acyl chains, but to a lesser extent than CH; 3) the number of hydrogen bonds between DPPC and water is decreased in a CS-containing membrane, but CS forms more water hydrogen bonds than CH; and 4) the membrane dipole potential reverses its sign for a DPPC-CS membrane compared to a DPPC-CH bilayer. We also studied the changes occurring in lipid headgroup conformations and determined the location of CS molecules in the membrane. Our results are in good agreement with the data available from experiments.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(00)76719-1</identifier><identifier>PMID: 10733950</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>1,2-Dipalmitoylphosphatidylcholine - chemistry ; Biophysical Phenomena ; Biophysics ; Cholesterol ; Cholesterol - chemistry ; Cholesterol Esters - chemistry ; Dimerization ; Hydrogen Bonding ; Lipid Bilayers - chemistry ; Membranes ; Models, Molecular ; Molecular biology ; Molecular Conformation ; Thermodynamics</subject><ispartof>Biophysical journal, 2000-04, Vol.78 (4), p.1672-1680</ispartof><rights>2000 The Biophysical Society</rights><rights>Copyright Biophysical Society Apr 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-eb201a13df49359a26665fa1ef78752400cddb518c1dcd3274f892926ef9116c3</citedby><cites>FETCH-LOGICAL-c490t-eb201a13df49359a26665fa1ef78752400cddb518c1dcd3274f892926ef9116c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1300764/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1300764/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10733950$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smondyrev, Alexander M.</creatorcontrib><creatorcontrib>Berkowitz, Max L.</creatorcontrib><title>Molecular Dynamics Simulation of Dipalmitoylphosphatidylcholine Membrane with Cholesterol Sulfate</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Using the molecular dynamics simulation technique, we studied the changes occurring in a dipalmitoylphosphatidylcholine (DPPC):cholesterol (CH) membrane at 50 mol% sterol when cholesterol is replaced with cholesterol sulfate (CS). Our simulations were performed at constant pressure and temperature on a nanosecond time scale. We found that 1) the area per DPPC:CS heterodimer is greater than the area of the DPPC:CH heterodimer; 2) CS increases ordering of DPPC acyl chains, but to a lesser extent than CH; 3) the number of hydrogen bonds between DPPC and water is decreased in a CS-containing membrane, but CS forms more water hydrogen bonds than CH; and 4) the membrane dipole potential reverses its sign for a DPPC-CS membrane compared to a DPPC-CH bilayer. We also studied the changes occurring in lipid headgroup conformations and determined the location of CS molecules in the membrane. Our results are in good agreement with the data available from experiments.</description><subject>1,2-Dipalmitoylphosphatidylcholine - chemistry</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Cholesterol</subject><subject>Cholesterol - chemistry</subject><subject>Cholesterol Esters - chemistry</subject><subject>Dimerization</subject><subject>Hydrogen Bonding</subject><subject>Lipid Bilayers - chemistry</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular Conformation</subject><subject>Thermodynamics</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhS1ERZeFnwCKOCA4BGac2I4vILSlLVIrDgtny-s4xJUTp3ZStP8et1tVhQsnWzOf38zzI-QVwgcE5B-3AMDLqpbsHcB7wQXKEp-QFbKalgANf0pWD8gxeZ7SFQBSBviMHCOIqpIMVkRfBm_N4nUsTvajHpxJxdYNuTC7MBahK07cpP3g5rD3Ux_S1OdOu_emD96Ntri0wy7qfPnt5r7Y5KpNs43BF9vFd3q2L8hRp32yL-_PNfl5-vXH5ry8-H72bfPlojS1hLm0OwqosWq7WlZMaso5Z51G24lGMFoDmLbdMWwMtqatqKi7RlJJue0kIjfVmnw66E7LbrCtseMctVdTdIOOexW0U393RterX-FGYQUgeJ0F3t4LxHC9ZBdqcMlY77O7sCQlQEqBlczgm3_Aq7DEMZtTFJmgwGiTIXaATAwpRds9bIKgbhNUdwmq23gUgLpLMO-yJq8f23j06hBZBj4fAJs_88bZqJJxdjS2ddGaWbXB_WfEH_2mrVY</recordid><startdate>20000401</startdate><enddate>20000401</enddate><creator>Smondyrev, Alexander M.</creator><creator>Berkowitz, Max L.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000401</creationdate><title>Molecular Dynamics Simulation of Dipalmitoylphosphatidylcholine Membrane with Cholesterol Sulfate</title><author>Smondyrev, Alexander M. ; Berkowitz, Max L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-eb201a13df49359a26665fa1ef78752400cddb518c1dcd3274f892926ef9116c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>1,2-Dipalmitoylphosphatidylcholine - chemistry</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Cholesterol</topic><topic>Cholesterol - chemistry</topic><topic>Cholesterol Esters - chemistry</topic><topic>Dimerization</topic><topic>Hydrogen Bonding</topic><topic>Lipid Bilayers - chemistry</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular Conformation</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smondyrev, Alexander M.</creatorcontrib><creatorcontrib>Berkowitz, Max L.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smondyrev, Alexander M.</au><au>Berkowitz, Max L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Simulation of Dipalmitoylphosphatidylcholine Membrane with Cholesterol Sulfate</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2000-04-01</date><risdate>2000</risdate><volume>78</volume><issue>4</issue><spage>1672</spage><epage>1680</epage><pages>1672-1680</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Using the molecular dynamics simulation technique, we studied the changes occurring in a dipalmitoylphosphatidylcholine (DPPC):cholesterol (CH) membrane at 50 mol% sterol when cholesterol is replaced with cholesterol sulfate (CS). Our simulations were performed at constant pressure and temperature on a nanosecond time scale. We found that 1) the area per DPPC:CS heterodimer is greater than the area of the DPPC:CH heterodimer; 2) CS increases ordering of DPPC acyl chains, but to a lesser extent than CH; 3) the number of hydrogen bonds between DPPC and water is decreased in a CS-containing membrane, but CS forms more water hydrogen bonds than CH; and 4) the membrane dipole potential reverses its sign for a DPPC-CS membrane compared to a DPPC-CH bilayer. We also studied the changes occurring in lipid headgroup conformations and determined the location of CS molecules in the membrane. Our results are in good agreement with the data available from experiments.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>10733950</pmid><doi>10.1016/S0006-3495(00)76719-1</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2000-04, Vol.78 (4), p.1672-1680 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1300764 |
source | PubMed Central |
subjects | 1,2-Dipalmitoylphosphatidylcholine - chemistry Biophysical Phenomena Biophysics Cholesterol Cholesterol - chemistry Cholesterol Esters - chemistry Dimerization Hydrogen Bonding Lipid Bilayers - chemistry Membranes Models, Molecular Molecular biology Molecular Conformation Thermodynamics |
title | Molecular Dynamics Simulation of Dipalmitoylphosphatidylcholine Membrane with Cholesterol Sulfate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A21%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Simulation%20of%20Dipalmitoylphosphatidylcholine%20Membrane%20with%20Cholesterol%20Sulfate&rft.jtitle=Biophysical%20journal&rft.au=Smondyrev,%20Alexander%20M.&rft.date=2000-04-01&rft.volume=78&rft.issue=4&rft.spage=1672&rft.epage=1680&rft.pages=1672-1680&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(00)76719-1&rft_dat=%3Cproquest_pubme%3E52471440%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-eb201a13df49359a26665fa1ef78752400cddb518c1dcd3274f892926ef9116c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215720528&rft_id=info:pmid/10733950&rfr_iscdi=true |