Loading…
Translocation-Independent Dimerization of the EcoKI Endonuclease Visualized by Atomic Force Microscopy
Bacterial type I restriction/modification systems are capable of performing multiple actions in response to the methylation pattern on their DNA recognition sequences. The enzymes making up these systems serve to protect the bacterial cells against viral infection by binding to their recognition seq...
Saved in:
Published in: | Biophysical journal 2000-07, Vol.79 (1), p.479-484 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c490t-a5b5f05743d5bbf6150082bdb323c5d7e61ec6d54f277606cdcd9b31e1f7d7cb3 |
---|---|
cites | cdi_FETCH-LOGICAL-c490t-a5b5f05743d5bbf6150082bdb323c5d7e61ec6d54f277606cdcd9b31e1f7d7cb3 |
container_end_page | 484 |
container_issue | 1 |
container_start_page | 479 |
container_title | Biophysical journal |
container_volume | 79 |
creator | Berge, Torunn Ellis, Darren J. Dryden, David T.F. Edwardson, J.Michael Henderson, Robert M. |
description | Bacterial type I restriction/modification systems are capable of performing multiple actions in response to the methylation pattern on their DNA recognition sequences. The enzymes making up these systems serve to protect the bacterial cells against viral infection by binding to their recognition sequences on the invading DNA and degrading it after extensive ATP-driven translocation. DNA cleavage has been thought to occur as the result of a collision between two translocating enzyme complexes. Using atomic force microscopy (AFM), we show here that
EcoKI dimerizes rapidly when bound to a plasmid containing two recognition sites for the enzyme. Dimerization proceeds in the absence of ATP and is also seen with an
EcoKI mutant (K477R) that is unable to translocate DNA. Only monomers are seen when the enzyme complex binds to a plasmid containing a single recognition site. Based on our results, we propose that the binding of
EcoKI to specific DNA target sequences is accompanied by a conformational change that leads rapidly to dimerization. This event is followed by ATP-dependent translocation and cleavage of the DNA. |
doi_str_mv | 10.1016/S0006-3495(00)76309-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1300951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349500763090</els_id><sourcerecordid>71212712</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-a5b5f05743d5bbf6150082bdb323c5d7e61ec6d54f277606cdcd9b31e1f7d7cb3</originalsourceid><addsrcrecordid>eNqFkUFv1DAQhS0EokvhJ4AsDogeAuM4tpsLqCrbsqKIA4Wr5dgT6iqxFzuptP31eHerqnDhMj7MN8_z5hHyksE7Bky-_w4AsuJNK94CHCnJoa3gEVkw0dQVwLF8TBb3yAF5lvM1AKsFsKfkgJW-bBVfkP4ymZCHaM3kY6hWweEaSwkT_eRHTP5216Cxp9MV0qWNX1Z0GVwMsx3QZKQ_fZ7N4G_R0W5DT6Y4ekvPYrJIv3qbYrZxvXlOnvRmyPji7j0kP86Wl6efq4tv56vTk4vKNi1MlRGd6EGohjvRdb1kojipO9fxmlvhFEqGVjrR9LVSEqR11rUdZ8h65ZTt-CH5sNddz92IzhYfyQx6nfxo0kZH4_XfneCv9K94oxkHaAUrAm_uBFL8PWOe9OizxWEwAeOctWI1q0sp4Ot_wOs4p1DM6ZoJxY5rvoXEHtreISfs7zdhoLcx6l2MepuRBtC7GDWUuVcPbTyY2udWgI97AMsxbzwmna3HYNH5hHbSLvr_fPEH5auuyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215718232</pqid></control><display><type>article</type><title>Translocation-Independent Dimerization of the EcoKI Endonuclease Visualized by Atomic Force Microscopy</title><source>PMC (PubMed Central)</source><creator>Berge, Torunn ; Ellis, Darren J. ; Dryden, David T.F. ; Edwardson, J.Michael ; Henderson, Robert M.</creator><creatorcontrib>Berge, Torunn ; Ellis, Darren J. ; Dryden, David T.F. ; Edwardson, J.Michael ; Henderson, Robert M.</creatorcontrib><description>Bacterial type I restriction/modification systems are capable of performing multiple actions in response to the methylation pattern on their DNA recognition sequences. The enzymes making up these systems serve to protect the bacterial cells against viral infection by binding to their recognition sequences on the invading DNA and degrading it after extensive ATP-driven translocation. DNA cleavage has been thought to occur as the result of a collision between two translocating enzyme complexes. Using atomic force microscopy (AFM), we show here that
EcoKI dimerizes rapidly when bound to a plasmid containing two recognition sites for the enzyme. Dimerization proceeds in the absence of ATP and is also seen with an
EcoKI mutant (K477R) that is unable to translocate DNA. Only monomers are seen when the enzyme complex binds to a plasmid containing a single recognition site. Based on our results, we propose that the binding of
EcoKI to specific DNA target sequences is accompanied by a conformational change that leads rapidly to dimerization. This event is followed by ATP-dependent translocation and cleavage of the DNA.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(00)76309-0</identifier><identifier>PMID: 10866973</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacteria ; Deoxyribonucleic acid ; Dimerization ; DNA ; DNA Restriction Enzymes - chemistry ; DNA Restriction Enzymes - ultrastructure ; Enzymes ; Escherichia coli - enzymology ; Microscopy, Atomic Force ; Models, Chemical ; Pharmacology ; Plasmids - chemistry ; Polylysine - chemistry ; Protein Conformation ; S-Adenosylmethionine - chemistry</subject><ispartof>Biophysical journal, 2000-07, Vol.79 (1), p.479-484</ispartof><rights>2000 The Biophysical Society</rights><rights>Copyright Biophysical Society Jul 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-a5b5f05743d5bbf6150082bdb323c5d7e61ec6d54f277606cdcd9b31e1f7d7cb3</citedby><cites>FETCH-LOGICAL-c490t-a5b5f05743d5bbf6150082bdb323c5d7e61ec6d54f277606cdcd9b31e1f7d7cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1300951/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1300951/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10866973$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Berge, Torunn</creatorcontrib><creatorcontrib>Ellis, Darren J.</creatorcontrib><creatorcontrib>Dryden, David T.F.</creatorcontrib><creatorcontrib>Edwardson, J.Michael</creatorcontrib><creatorcontrib>Henderson, Robert M.</creatorcontrib><title>Translocation-Independent Dimerization of the EcoKI Endonuclease Visualized by Atomic Force Microscopy</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Bacterial type I restriction/modification systems are capable of performing multiple actions in response to the methylation pattern on their DNA recognition sequences. The enzymes making up these systems serve to protect the bacterial cells against viral infection by binding to their recognition sequences on the invading DNA and degrading it after extensive ATP-driven translocation. DNA cleavage has been thought to occur as the result of a collision between two translocating enzyme complexes. Using atomic force microscopy (AFM), we show here that
EcoKI dimerizes rapidly when bound to a plasmid containing two recognition sites for the enzyme. Dimerization proceeds in the absence of ATP and is also seen with an
EcoKI mutant (K477R) that is unable to translocate DNA. Only monomers are seen when the enzyme complex binds to a plasmid containing a single recognition site. Based on our results, we propose that the binding of
EcoKI to specific DNA target sequences is accompanied by a conformational change that leads rapidly to dimerization. This event is followed by ATP-dependent translocation and cleavage of the DNA.</description><subject>Bacteria</subject><subject>Deoxyribonucleic acid</subject><subject>Dimerization</subject><subject>DNA</subject><subject>DNA Restriction Enzymes - chemistry</subject><subject>DNA Restriction Enzymes - ultrastructure</subject><subject>Enzymes</subject><subject>Escherichia coli - enzymology</subject><subject>Microscopy, Atomic Force</subject><subject>Models, Chemical</subject><subject>Pharmacology</subject><subject>Plasmids - chemistry</subject><subject>Polylysine - chemistry</subject><subject>Protein Conformation</subject><subject>S-Adenosylmethionine - chemistry</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkUFv1DAQhS0EokvhJ4AsDogeAuM4tpsLqCrbsqKIA4Wr5dgT6iqxFzuptP31eHerqnDhMj7MN8_z5hHyksE7Bky-_w4AsuJNK94CHCnJoa3gEVkw0dQVwLF8TBb3yAF5lvM1AKsFsKfkgJW-bBVfkP4ymZCHaM3kY6hWweEaSwkT_eRHTP5216Cxp9MV0qWNX1Z0GVwMsx3QZKQ_fZ7N4G_R0W5DT6Y4ekvPYrJIv3qbYrZxvXlOnvRmyPji7j0kP86Wl6efq4tv56vTk4vKNi1MlRGd6EGohjvRdb1kojipO9fxmlvhFEqGVjrR9LVSEqR11rUdZ8h65ZTt-CH5sNddz92IzhYfyQx6nfxo0kZH4_XfneCv9K94oxkHaAUrAm_uBFL8PWOe9OizxWEwAeOctWI1q0sp4Ot_wOs4p1DM6ZoJxY5rvoXEHtreISfs7zdhoLcx6l2MepuRBtC7GDWUuVcPbTyY2udWgI97AMsxbzwmna3HYNH5hHbSLvr_fPEH5auuyA</recordid><startdate>20000701</startdate><enddate>20000701</enddate><creator>Berge, Torunn</creator><creator>Ellis, Darren J.</creator><creator>Dryden, David T.F.</creator><creator>Edwardson, J.Michael</creator><creator>Henderson, Robert M.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000701</creationdate><title>Translocation-Independent Dimerization of the EcoKI Endonuclease Visualized by Atomic Force Microscopy</title><author>Berge, Torunn ; Ellis, Darren J. ; Dryden, David T.F. ; Edwardson, J.Michael ; Henderson, Robert M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-a5b5f05743d5bbf6150082bdb323c5d7e61ec6d54f277606cdcd9b31e1f7d7cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bacteria</topic><topic>Deoxyribonucleic acid</topic><topic>Dimerization</topic><topic>DNA</topic><topic>DNA Restriction Enzymes - chemistry</topic><topic>DNA Restriction Enzymes - ultrastructure</topic><topic>Enzymes</topic><topic>Escherichia coli - enzymology</topic><topic>Microscopy, Atomic Force</topic><topic>Models, Chemical</topic><topic>Pharmacology</topic><topic>Plasmids - chemistry</topic><topic>Polylysine - chemistry</topic><topic>Protein Conformation</topic><topic>S-Adenosylmethionine - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Berge, Torunn</creatorcontrib><creatorcontrib>Ellis, Darren J.</creatorcontrib><creatorcontrib>Dryden, David T.F.</creatorcontrib><creatorcontrib>Edwardson, J.Michael</creatorcontrib><creatorcontrib>Henderson, Robert M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Berge, Torunn</au><au>Ellis, Darren J.</au><au>Dryden, David T.F.</au><au>Edwardson, J.Michael</au><au>Henderson, Robert M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translocation-Independent Dimerization of the EcoKI Endonuclease Visualized by Atomic Force Microscopy</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2000-07-01</date><risdate>2000</risdate><volume>79</volume><issue>1</issue><spage>479</spage><epage>484</epage><pages>479-484</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Bacterial type I restriction/modification systems are capable of performing multiple actions in response to the methylation pattern on their DNA recognition sequences. The enzymes making up these systems serve to protect the bacterial cells against viral infection by binding to their recognition sequences on the invading DNA and degrading it after extensive ATP-driven translocation. DNA cleavage has been thought to occur as the result of a collision between two translocating enzyme complexes. Using atomic force microscopy (AFM), we show here that
EcoKI dimerizes rapidly when bound to a plasmid containing two recognition sites for the enzyme. Dimerization proceeds in the absence of ATP and is also seen with an
EcoKI mutant (K477R) that is unable to translocate DNA. Only monomers are seen when the enzyme complex binds to a plasmid containing a single recognition site. Based on our results, we propose that the binding of
EcoKI to specific DNA target sequences is accompanied by a conformational change that leads rapidly to dimerization. This event is followed by ATP-dependent translocation and cleavage of the DNA.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>10866973</pmid><doi>10.1016/S0006-3495(00)76309-0</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2000-07, Vol.79 (1), p.479-484 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1300951 |
source | PMC (PubMed Central) |
subjects | Bacteria Deoxyribonucleic acid Dimerization DNA DNA Restriction Enzymes - chemistry DNA Restriction Enzymes - ultrastructure Enzymes Escherichia coli - enzymology Microscopy, Atomic Force Models, Chemical Pharmacology Plasmids - chemistry Polylysine - chemistry Protein Conformation S-Adenosylmethionine - chemistry |
title | Translocation-Independent Dimerization of the EcoKI Endonuclease Visualized by Atomic Force Microscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A28%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translocation-Independent%20Dimerization%20of%20the%20EcoKI%20Endonuclease%20Visualized%20by%20Atomic%20Force%20Microscopy&rft.jtitle=Biophysical%20journal&rft.au=Berge,%20Torunn&rft.date=2000-07-01&rft.volume=79&rft.issue=1&rft.spage=479&rft.epage=484&rft.pages=479-484&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(00)76309-0&rft_dat=%3Cproquest_pubme%3E71212712%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-a5b5f05743d5bbf6150082bdb323c5d7e61ec6d54f277606cdcd9b31e1f7d7cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215718232&rft_id=info:pmid/10866973&rfr_iscdi=true |