Loading…
High-Pressure and Stark Hole-Burning Studies of Chlorosome Antennas from Chlorobium tepidum
Results from high-pressure and Stark hole-burning experiments on isolated chlorosomes from the green sulfur bacterium Chlorobium tepidum are presented, as well as Stark hole-burning data for bacteriochlorophyll c (BChl c) monomers in a poly(vinyl butyral) copolymer film. Large linear pressure shift...
Saved in:
Published in: | Biophysical journal 2000-09, Vol.79 (3), p.1561-1572 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c554t-3696540407d7ec5b23ec08a5ab7a144fa8e23ec54bcd816a5b00097459aa40343 |
---|---|
cites | cdi_FETCH-LOGICAL-c554t-3696540407d7ec5b23ec08a5ab7a144fa8e23ec54bcd816a5b00097459aa40343 |
container_end_page | 1572 |
container_issue | 3 |
container_start_page | 1561 |
container_title | Biophysical journal |
container_volume | 79 |
creator | Wu, H.-M. Rätsep, M. Young, C.S. Jankowiak, R. Blankenship, R.E. Small, G.J. |
description | Results from high-pressure and Stark hole-burning experiments on isolated chlorosomes from the green sulfur bacterium
Chlorobium tepidum are presented, as well as Stark hole-burning data for bacteriochlorophyll
c (BChl
c) monomers in a poly(vinyl butyral) copolymer film. Large linear pressure shift rates of −0.44 and −0.54
cm
−1/MPa were observed for the chlorosome BChl
c Q
y-band at 100
K and the lowest Q
y-exciton level at 12
K, respectively. It is argued that approximately half of the latter shift rate is due to electron exchange coupling between BChl
c molecules. The similarity between the above shift rates and those observed for the B875 and B850 BChl
a rings of the light-harvesting complexes of purple bacteria is emphasized. For BChl
c monomer, ƒΔ
μ
=
0.35 D, where Δ
μ is the dipole moment change for the Q
y transition and ƒ is the local field correction factor. The data establish that Δ
μ is dominated by the matrix-induced contribution. The change in polarizability (Δ
α) for the Q
y transition of the BChl
c monomer is estimated at 19
Å
3, which is essentially identical to that of the Chl
a monomer. Interestingly, no Stark effects were observed for the lowest exciton level of the chlorosomes (maximum Stark field of 10
5
V/cm). Possible explanations for this are given, and these include consideration of structural models for the chlorosome BChl
c aggregates. |
doi_str_mv | 10.1016/S0006-3495(00)76407-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1301049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349500764071</els_id><sourcerecordid>1521401112</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-3696540407d7ec5b23ec08a5ab7a144fa8e23ec54bcd816a5b00097459aa40343</originalsourceid><addsrcrecordid>eNqFkkFv1DAQhS0EosvCTwBFHFA5BGYS29lcisoKWKRKIBVOHCzHmey6JPZiJ5X49zjdVVU40JOlmc8zem8eY88R3iCgfHsJADIveS1OAV5XkkOV4wO2QMGLHGAlH7LFLXLCnsR4BYCFAHzMThBqWQNWC_ZjY7e7_GugGKdAmXZtdjnq8DPb-J7y91Nw1m1TaWotxcx32XrX--CjHyg7dyM5p2PWBT8cG42dhmykvW2n4Sl71Ok-0rPju2TfP374tt7kF18-fV6fX-RGCD7mpayl4JAEtBUZ0RQlGVhpoZtKI-edXtFcErwx7QqlFk3SVVdc1FpzKHm5ZGeHufupGag15Mage7UPdtDht_Laqr87zu7U1l8rLAGB12nAq-OA4H9NFEc12Gio77UjP0VVFUUpVgW_F8RKSlnxKoGn_wdFgRwQsUjoy3_QK59sT4apAsW8Ws6QOEAmeR8DdbfqENScB3WTBzUfWwGomzwkfUv24q41d34dApCAdweA0oGuLQUVjSVnqLWBzKhab-9Z8QfQbsRb</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215722362</pqid></control><display><type>article</type><title>High-Pressure and Stark Hole-Burning Studies of Chlorosome Antennas from Chlorobium tepidum</title><source>PubMed Central</source><creator>Wu, H.-M. ; Rätsep, M. ; Young, C.S. ; Jankowiak, R. ; Blankenship, R.E. ; Small, G.J.</creator><creatorcontrib>Wu, H.-M. ; Rätsep, M. ; Young, C.S. ; Jankowiak, R. ; Blankenship, R.E. ; Small, G.J.</creatorcontrib><description>Results from high-pressure and Stark hole-burning experiments on isolated chlorosomes from the green sulfur bacterium
Chlorobium tepidum are presented, as well as Stark hole-burning data for bacteriochlorophyll
c (BChl
c) monomers in a poly(vinyl butyral) copolymer film. Large linear pressure shift rates of −0.44 and −0.54
cm
−1/MPa were observed for the chlorosome BChl
c Q
y-band at 100
K and the lowest Q
y-exciton level at 12
K, respectively. It is argued that approximately half of the latter shift rate is due to electron exchange coupling between BChl
c molecules. The similarity between the above shift rates and those observed for the B875 and B850 BChl
a rings of the light-harvesting complexes of purple bacteria is emphasized. For BChl
c monomer, ƒΔ
μ
=
0.35 D, where Δ
μ is the dipole moment change for the Q
y transition and ƒ is the local field correction factor. The data establish that Δ
μ is dominated by the matrix-induced contribution. The change in polarizability (Δ
α) for the Q
y transition of the BChl
c monomer is estimated at 19
Å
3, which is essentially identical to that of the Chl
a monomer. Interestingly, no Stark effects were observed for the lowest exciton level of the chlorosomes (maximum Stark field of 10
5
V/cm). Possible explanations for this are given, and these include consideration of structural models for the chlorosome BChl
c aggregates.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(00)76407-1</identifier><identifier>PMID: 10969017</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bacteria ; Bacterial Proteins - chemistry ; Bacteriochlorophylls ; Biochemistry ; Chlorobi - physiology ; Chlorobium tepidum ; Light-Harvesting Protein Complexes ; Organelles - physiology ; Photosynthetic Reaction Center Complex Proteins - chemistry ; Photosynthetic Reaction Center Complex Proteins - metabolism ; Polyvinyls ; Pressure ; Space life sciences ; Spectrophotometry</subject><ispartof>Biophysical journal, 2000-09, Vol.79 (3), p.1561-1572</ispartof><rights>2000 The Biophysical Society</rights><rights>Copyright Biophysical Society Sep 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-3696540407d7ec5b23ec08a5ab7a144fa8e23ec54bcd816a5b00097459aa40343</citedby><cites>FETCH-LOGICAL-c554t-3696540407d7ec5b23ec08a5ab7a144fa8e23ec54bcd816a5b00097459aa40343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1301049/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1301049/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10969017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, H.-M.</creatorcontrib><creatorcontrib>Rätsep, M.</creatorcontrib><creatorcontrib>Young, C.S.</creatorcontrib><creatorcontrib>Jankowiak, R.</creatorcontrib><creatorcontrib>Blankenship, R.E.</creatorcontrib><creatorcontrib>Small, G.J.</creatorcontrib><title>High-Pressure and Stark Hole-Burning Studies of Chlorosome Antennas from Chlorobium tepidum</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Results from high-pressure and Stark hole-burning experiments on isolated chlorosomes from the green sulfur bacterium
Chlorobium tepidum are presented, as well as Stark hole-burning data for bacteriochlorophyll
c (BChl
c) monomers in a poly(vinyl butyral) copolymer film. Large linear pressure shift rates of −0.44 and −0.54
cm
−1/MPa were observed for the chlorosome BChl
c Q
y-band at 100
K and the lowest Q
y-exciton level at 12
K, respectively. It is argued that approximately half of the latter shift rate is due to electron exchange coupling between BChl
c molecules. The similarity between the above shift rates and those observed for the B875 and B850 BChl
a rings of the light-harvesting complexes of purple bacteria is emphasized. For BChl
c monomer, ƒΔ
μ
=
0.35 D, where Δ
μ is the dipole moment change for the Q
y transition and ƒ is the local field correction factor. The data establish that Δ
μ is dominated by the matrix-induced contribution. The change in polarizability (Δ
α) for the Q
y transition of the BChl
c monomer is estimated at 19
Å
3, which is essentially identical to that of the Chl
a monomer. Interestingly, no Stark effects were observed for the lowest exciton level of the chlorosomes (maximum Stark field of 10
5
V/cm). Possible explanations for this are given, and these include consideration of structural models for the chlorosome BChl
c aggregates.</description><subject>Bacteria</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacteriochlorophylls</subject><subject>Biochemistry</subject><subject>Chlorobi - physiology</subject><subject>Chlorobium tepidum</subject><subject>Light-Harvesting Protein Complexes</subject><subject>Organelles - physiology</subject><subject>Photosynthetic Reaction Center Complex Proteins - chemistry</subject><subject>Photosynthetic Reaction Center Complex Proteins - metabolism</subject><subject>Polyvinyls</subject><subject>Pressure</subject><subject>Space life sciences</subject><subject>Spectrophotometry</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNqFkkFv1DAQhS0EosvCTwBFHFA5BGYS29lcisoKWKRKIBVOHCzHmey6JPZiJ5X49zjdVVU40JOlmc8zem8eY88R3iCgfHsJADIveS1OAV5XkkOV4wO2QMGLHGAlH7LFLXLCnsR4BYCFAHzMThBqWQNWC_ZjY7e7_GugGKdAmXZtdjnq8DPb-J7y91Nw1m1TaWotxcx32XrX--CjHyg7dyM5p2PWBT8cG42dhmykvW2n4Sl71Ok-0rPju2TfP374tt7kF18-fV6fX-RGCD7mpayl4JAEtBUZ0RQlGVhpoZtKI-edXtFcErwx7QqlFk3SVVdc1FpzKHm5ZGeHufupGag15Mage7UPdtDht_Laqr87zu7U1l8rLAGB12nAq-OA4H9NFEc12Gio77UjP0VVFUUpVgW_F8RKSlnxKoGn_wdFgRwQsUjoy3_QK59sT4apAsW8Ws6QOEAmeR8DdbfqENScB3WTBzUfWwGomzwkfUv24q41d34dApCAdweA0oGuLQUVjSVnqLWBzKhab-9Z8QfQbsRb</recordid><startdate>20000901</startdate><enddate>20000901</enddate><creator>Wu, H.-M.</creator><creator>Rätsep, M.</creator><creator>Young, C.S.</creator><creator>Jankowiak, R.</creator><creator>Blankenship, R.E.</creator><creator>Small, G.J.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20000901</creationdate><title>High-Pressure and Stark Hole-Burning Studies of Chlorosome Antennas from Chlorobium tepidum</title><author>Wu, H.-M. ; Rätsep, M. ; Young, C.S. ; Jankowiak, R. ; Blankenship, R.E. ; Small, G.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-3696540407d7ec5b23ec08a5ab7a144fa8e23ec54bcd816a5b00097459aa40343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Bacteria</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacteriochlorophylls</topic><topic>Biochemistry</topic><topic>Chlorobi - physiology</topic><topic>Chlorobium tepidum</topic><topic>Light-Harvesting Protein Complexes</topic><topic>Organelles - physiology</topic><topic>Photosynthetic Reaction Center Complex Proteins - chemistry</topic><topic>Photosynthetic Reaction Center Complex Proteins - metabolism</topic><topic>Polyvinyls</topic><topic>Pressure</topic><topic>Space life sciences</topic><topic>Spectrophotometry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, H.-M.</creatorcontrib><creatorcontrib>Rätsep, M.</creatorcontrib><creatorcontrib>Young, C.S.</creatorcontrib><creatorcontrib>Jankowiak, R.</creatorcontrib><creatorcontrib>Blankenship, R.E.</creatorcontrib><creatorcontrib>Small, G.J.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, H.-M.</au><au>Rätsep, M.</au><au>Young, C.S.</au><au>Jankowiak, R.</au><au>Blankenship, R.E.</au><au>Small, G.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Pressure and Stark Hole-Burning Studies of Chlorosome Antennas from Chlorobium tepidum</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2000-09-01</date><risdate>2000</risdate><volume>79</volume><issue>3</issue><spage>1561</spage><epage>1572</epage><pages>1561-1572</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Results from high-pressure and Stark hole-burning experiments on isolated chlorosomes from the green sulfur bacterium
Chlorobium tepidum are presented, as well as Stark hole-burning data for bacteriochlorophyll
c (BChl
c) monomers in a poly(vinyl butyral) copolymer film. Large linear pressure shift rates of −0.44 and −0.54
cm
−1/MPa were observed for the chlorosome BChl
c Q
y-band at 100
K and the lowest Q
y-exciton level at 12
K, respectively. It is argued that approximately half of the latter shift rate is due to electron exchange coupling between BChl
c molecules. The similarity between the above shift rates and those observed for the B875 and B850 BChl
a rings of the light-harvesting complexes of purple bacteria is emphasized. For BChl
c monomer, ƒΔ
μ
=
0.35 D, where Δ
μ is the dipole moment change for the Q
y transition and ƒ is the local field correction factor. The data establish that Δ
μ is dominated by the matrix-induced contribution. The change in polarizability (Δ
α) for the Q
y transition of the BChl
c monomer is estimated at 19
Å
3, which is essentially identical to that of the Chl
a monomer. Interestingly, no Stark effects were observed for the lowest exciton level of the chlorosomes (maximum Stark field of 10
5
V/cm). Possible explanations for this are given, and these include consideration of structural models for the chlorosome BChl
c aggregates.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>10969017</pmid><doi>10.1016/S0006-3495(00)76407-1</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2000-09, Vol.79 (3), p.1561-1572 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1301049 |
source | PubMed Central |
subjects | Bacteria Bacterial Proteins - chemistry Bacteriochlorophylls Biochemistry Chlorobi - physiology Chlorobium tepidum Light-Harvesting Protein Complexes Organelles - physiology Photosynthetic Reaction Center Complex Proteins - chemistry Photosynthetic Reaction Center Complex Proteins - metabolism Polyvinyls Pressure Space life sciences Spectrophotometry |
title | High-Pressure and Stark Hole-Burning Studies of Chlorosome Antennas from Chlorobium tepidum |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A53%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Pressure%20and%20Stark%20Hole-Burning%20Studies%20of%20Chlorosome%20Antennas%20from%20Chlorobium%20tepidum&rft.jtitle=Biophysical%20journal&rft.au=Wu,%20H.-M.&rft.date=2000-09-01&rft.volume=79&rft.issue=3&rft.spage=1561&rft.epage=1572&rft.pages=1561-1572&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(00)76407-1&rft_dat=%3Cproquest_pubme%3E1521401112%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c554t-3696540407d7ec5b23ec08a5ab7a144fa8e23ec54bcd816a5b00097459aa40343%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215722362&rft_id=info:pmid/10969017&rfr_iscdi=true |