Loading…

New Insights into the Allosteric Mechanism of Human Hemoglobin from Molecular Dynamics Simulations

It is still difficult to obtain a precise structural description of the transition between the deoxy T-state and oxy R-state conformations of human hemoglobin, despite a large number of experimental studies. We used molecular dynamics with the Path Exploration with Distance Constraints (PEDC) method...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2002-06, Vol.82 (6), p.3224-3245
Main Authors: Mouawad, Liliane, Perahia, David, Robert, Charles H., Guilbert, Christophe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c490t-95233f6593de974eb75dbb6570245b0d3c9702f02d662c85624cb66559a2733d3
cites cdi_FETCH-LOGICAL-c490t-95233f6593de974eb75dbb6570245b0d3c9702f02d662c85624cb66559a2733d3
container_end_page 3245
container_issue 6
container_start_page 3224
container_title Biophysical journal
container_volume 82
creator Mouawad, Liliane
Perahia, David
Robert, Charles H.
Guilbert, Christophe
description It is still difficult to obtain a precise structural description of the transition between the deoxy T-state and oxy R-state conformations of human hemoglobin, despite a large number of experimental studies. We used molecular dynamics with the Path Exploration with Distance Constraints (PEDC) method to provide new insights into the allosteric mechanism at the atomic level, by simulating the T-to-R transition. The T-state molecule in the absence of ligands was seen to have a natural propensity for dimer rotation, which nevertheless would be hampered by steric hindrance in the “joint” region. The binding of a ligand to the α subunit would prevent such hindrance due to the coupling between this region and the α proximal histidine, and thus facilitate completion of the dimer rotation. Near the end of this quaternary transition, the “switch” region adopts the R conformation, resulting in a shift of the β proximal histidine. This leads to a sliding of the β-heme, the effect of which is to open the β-heme’s distal side, increasing the accessibility of the Fe atom and thereby the affinity of the protein. Our simulations are globally consistent with the Perutz strereochemical mechanism.
doi_str_mv 10.1016/S0006-3495(02)75665-8
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1302112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349502756658</els_id><sourcerecordid>134245301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-95233f6593de974eb75dbb6570245b0d3c9702f02d662c85624cb66559a2733d3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhJ4AsDggOgbEdO8kFVJWPrdTCoXC2HGey6yq2Wzsp6r_H7a7Kx4WTR_Yzr-edl5DnDN4yYOrdOQCoStSdfA38TSOVklX7gKyYrHkF0KqHZHWPHJAnOV8AMC6BPSYHjAMXvG5WpP-KP-lJyG6znTN1YY503iI9mqaYZ0zO0jO0WxNc9jSOdL14E-gafdxMsXeBjil6ehYntMtkEv14E4x3NtNz58vF7GLIT8mj0UwZn-3PQ_Lj86fvx-vq9NuXk-Oj08rWHcxVJ7kQo5KdGLBrauwbOfS9kg3wWvYwCNuVcgQ-KMVtKxWvbV9cy87wRohBHJL3O93Lpfc4WAxzMpO-TM6bdKOjcfrvl-C2ehOvNRPAGeNF4NVeIMWrBfOsvcsWp8kEjEvWDWtAdIoV8OU_4EVcUijmNGdl4K4FVSC5g2yKOScc7ydhoG8j1HcR6tt8NHB9F6FuS9-LP2387tpnVoAPOwDLMq8dJp2tw2BxcAntrIfo_vPFL0zTq5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215709806</pqid></control><display><type>article</type><title>New Insights into the Allosteric Mechanism of Human Hemoglobin from Molecular Dynamics Simulations</title><source>PubMed Central</source><creator>Mouawad, Liliane ; Perahia, David ; Robert, Charles H. ; Guilbert, Christophe</creator><creatorcontrib>Mouawad, Liliane ; Perahia, David ; Robert, Charles H. ; Guilbert, Christophe</creatorcontrib><description>It is still difficult to obtain a precise structural description of the transition between the deoxy T-state and oxy R-state conformations of human hemoglobin, despite a large number of experimental studies. We used molecular dynamics with the Path Exploration with Distance Constraints (PEDC) method to provide new insights into the allosteric mechanism at the atomic level, by simulating the T-to-R transition. The T-state molecule in the absence of ligands was seen to have a natural propensity for dimer rotation, which nevertheless would be hampered by steric hindrance in the “joint” region. The binding of a ligand to the α subunit would prevent such hindrance due to the coupling between this region and the α proximal histidine, and thus facilitate completion of the dimer rotation. Near the end of this quaternary transition, the “switch” region adopts the R conformation, resulting in a shift of the β proximal histidine. This leads to a sliding of the β-heme, the effect of which is to open the β-heme’s distal side, increasing the accessibility of the Fe atom and thereby the affinity of the protein. Our simulations are globally consistent with the Perutz strereochemical mechanism.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(02)75665-8</identifier><identifier>PMID: 12023247</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Binding Sites ; Biochemistry ; Biophysical Phenomena ; Biophysics ; Dimerization ; Heme - chemistry ; Hemoglobins - chemistry ; Humans ; Hydrogen Bonding ; In Vitro Techniques ; Models, Molecular ; Molecular biology ; Oxyhemoglobins - chemistry ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Proteins ; Rotation ; Thermodynamics</subject><ispartof>Biophysical journal, 2002-06, Vol.82 (6), p.3224-3245</ispartof><rights>2002 The Biophysical Society</rights><rights>Copyright Biophysical Society Jun 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-95233f6593de974eb75dbb6570245b0d3c9702f02d662c85624cb66559a2733d3</citedby><cites>FETCH-LOGICAL-c490t-95233f6593de974eb75dbb6570245b0d3c9702f02d662c85624cb66559a2733d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302112/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302112/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12023247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mouawad, Liliane</creatorcontrib><creatorcontrib>Perahia, David</creatorcontrib><creatorcontrib>Robert, Charles H.</creatorcontrib><creatorcontrib>Guilbert, Christophe</creatorcontrib><title>New Insights into the Allosteric Mechanism of Human Hemoglobin from Molecular Dynamics Simulations</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>It is still difficult to obtain a precise structural description of the transition between the deoxy T-state and oxy R-state conformations of human hemoglobin, despite a large number of experimental studies. We used molecular dynamics with the Path Exploration with Distance Constraints (PEDC) method to provide new insights into the allosteric mechanism at the atomic level, by simulating the T-to-R transition. The T-state molecule in the absence of ligands was seen to have a natural propensity for dimer rotation, which nevertheless would be hampered by steric hindrance in the “joint” region. The binding of a ligand to the α subunit would prevent such hindrance due to the coupling between this region and the α proximal histidine, and thus facilitate completion of the dimer rotation. Near the end of this quaternary transition, the “switch” region adopts the R conformation, resulting in a shift of the β proximal histidine. This leads to a sliding of the β-heme, the effect of which is to open the β-heme’s distal side, increasing the accessibility of the Fe atom and thereby the affinity of the protein. Our simulations are globally consistent with the Perutz strereochemical mechanism.</description><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Dimerization</subject><subject>Heme - chemistry</subject><subject>Hemoglobins - chemistry</subject><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>In Vitro Techniques</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Oxyhemoglobins - chemistry</subject><subject>Protein Conformation</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Rotation</subject><subject>Thermodynamics</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EokvhJ4AsDggOgbEdO8kFVJWPrdTCoXC2HGey6yq2Wzsp6r_H7a7Kx4WTR_Yzr-edl5DnDN4yYOrdOQCoStSdfA38TSOVklX7gKyYrHkF0KqHZHWPHJAnOV8AMC6BPSYHjAMXvG5WpP-KP-lJyG6znTN1YY503iI9mqaYZ0zO0jO0WxNc9jSOdL14E-gafdxMsXeBjil6ehYntMtkEv14E4x3NtNz58vF7GLIT8mj0UwZn-3PQ_Lj86fvx-vq9NuXk-Oj08rWHcxVJ7kQo5KdGLBrauwbOfS9kg3wWvYwCNuVcgQ-KMVtKxWvbV9cy87wRohBHJL3O93Lpfc4WAxzMpO-TM6bdKOjcfrvl-C2ehOvNRPAGeNF4NVeIMWrBfOsvcsWp8kEjEvWDWtAdIoV8OU_4EVcUijmNGdl4K4FVSC5g2yKOScc7ydhoG8j1HcR6tt8NHB9F6FuS9-LP2387tpnVoAPOwDLMq8dJp2tw2BxcAntrIfo_vPFL0zTq5g</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Mouawad, Liliane</creator><creator>Perahia, David</creator><creator>Robert, Charles H.</creator><creator>Guilbert, Christophe</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020601</creationdate><title>New Insights into the Allosteric Mechanism of Human Hemoglobin from Molecular Dynamics Simulations</title><author>Mouawad, Liliane ; Perahia, David ; Robert, Charles H. ; Guilbert, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-95233f6593de974eb75dbb6570245b0d3c9702f02d662c85624cb66559a2733d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Dimerization</topic><topic>Heme - chemistry</topic><topic>Hemoglobins - chemistry</topic><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>In Vitro Techniques</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Oxyhemoglobins - chemistry</topic><topic>Protein Conformation</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Rotation</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mouawad, Liliane</creatorcontrib><creatorcontrib>Perahia, David</creatorcontrib><creatorcontrib>Robert, Charles H.</creatorcontrib><creatorcontrib>Guilbert, Christophe</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mouawad, Liliane</au><au>Perahia, David</au><au>Robert, Charles H.</au><au>Guilbert, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Insights into the Allosteric Mechanism of Human Hemoglobin from Molecular Dynamics Simulations</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2002-06-01</date><risdate>2002</risdate><volume>82</volume><issue>6</issue><spage>3224</spage><epage>3245</epage><pages>3224-3245</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>It is still difficult to obtain a precise structural description of the transition between the deoxy T-state and oxy R-state conformations of human hemoglobin, despite a large number of experimental studies. We used molecular dynamics with the Path Exploration with Distance Constraints (PEDC) method to provide new insights into the allosteric mechanism at the atomic level, by simulating the T-to-R transition. The T-state molecule in the absence of ligands was seen to have a natural propensity for dimer rotation, which nevertheless would be hampered by steric hindrance in the “joint” region. The binding of a ligand to the α subunit would prevent such hindrance due to the coupling between this region and the α proximal histidine, and thus facilitate completion of the dimer rotation. Near the end of this quaternary transition, the “switch” region adopts the R conformation, resulting in a shift of the β proximal histidine. This leads to a sliding of the β-heme, the effect of which is to open the β-heme’s distal side, increasing the accessibility of the Fe atom and thereby the affinity of the protein. Our simulations are globally consistent with the Perutz strereochemical mechanism.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12023247</pmid><doi>10.1016/S0006-3495(02)75665-8</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2002-06, Vol.82 (6), p.3224-3245
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1302112
source PubMed Central
subjects Binding Sites
Biochemistry
Biophysical Phenomena
Biophysics
Dimerization
Heme - chemistry
Hemoglobins - chemistry
Humans
Hydrogen Bonding
In Vitro Techniques
Models, Molecular
Molecular biology
Oxyhemoglobins - chemistry
Protein Conformation
Protein Structure, Quaternary
Protein Structure, Secondary
Proteins
Rotation
Thermodynamics
title New Insights into the Allosteric Mechanism of Human Hemoglobin from Molecular Dynamics Simulations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Insights%20into%20the%20Allosteric%20Mechanism%20of%20Human%20Hemoglobin%20from%20Molecular%20Dynamics%20Simulations&rft.jtitle=Biophysical%20journal&rft.au=Mouawad,%20Liliane&rft.date=2002-06-01&rft.volume=82&rft.issue=6&rft.spage=3224&rft.epage=3245&rft.pages=3224-3245&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(02)75665-8&rft_dat=%3Cproquest_pubme%3E134245301%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-95233f6593de974eb75dbb6570245b0d3c9702f02d662c85624cb66559a2733d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215709806&rft_id=info:pmid/12023247&rfr_iscdi=true