Loading…
New Insights into the Allosteric Mechanism of Human Hemoglobin from Molecular Dynamics Simulations
It is still difficult to obtain a precise structural description of the transition between the deoxy T-state and oxy R-state conformations of human hemoglobin, despite a large number of experimental studies. We used molecular dynamics with the Path Exploration with Distance Constraints (PEDC) method...
Saved in:
Published in: | Biophysical journal 2002-06, Vol.82 (6), p.3224-3245 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c490t-95233f6593de974eb75dbb6570245b0d3c9702f02d662c85624cb66559a2733d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c490t-95233f6593de974eb75dbb6570245b0d3c9702f02d662c85624cb66559a2733d3 |
container_end_page | 3245 |
container_issue | 6 |
container_start_page | 3224 |
container_title | Biophysical journal |
container_volume | 82 |
creator | Mouawad, Liliane Perahia, David Robert, Charles H. Guilbert, Christophe |
description | It is still difficult to obtain a precise structural description of the transition between the deoxy T-state and oxy R-state conformations of human hemoglobin, despite a large number of experimental studies. We used molecular dynamics with the Path Exploration with Distance Constraints (PEDC) method to provide new insights into the allosteric mechanism at the atomic level, by simulating the T-to-R transition. The T-state molecule in the absence of ligands was seen to have a natural propensity for dimer rotation, which nevertheless would be hampered by steric hindrance in the “joint” region. The binding of a ligand to the
α subunit would prevent such hindrance due to the coupling between this region and the
α proximal histidine, and thus facilitate completion of the dimer rotation. Near the end of this quaternary transition, the “switch” region adopts the R conformation, resulting in a shift of the
β proximal histidine. This leads to a sliding of the
β-heme, the effect of which is to open the
β-heme’s distal side, increasing the accessibility of the Fe atom and thereby the affinity of the protein. Our simulations are globally consistent with the Perutz strereochemical mechanism. |
doi_str_mv | 10.1016/S0006-3495(02)75665-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1302112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349502756658</els_id><sourcerecordid>134245301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-95233f6593de974eb75dbb6570245b0d3c9702f02d662c85624cb66559a2733d3</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0EokvhJ4AsDggOgbEdO8kFVJWPrdTCoXC2HGey6yq2Wzsp6r_H7a7Kx4WTR_Yzr-edl5DnDN4yYOrdOQCoStSdfA38TSOVklX7gKyYrHkF0KqHZHWPHJAnOV8AMC6BPSYHjAMXvG5WpP-KP-lJyG6znTN1YY503iI9mqaYZ0zO0jO0WxNc9jSOdL14E-gafdxMsXeBjil6ehYntMtkEv14E4x3NtNz58vF7GLIT8mj0UwZn-3PQ_Lj86fvx-vq9NuXk-Oj08rWHcxVJ7kQo5KdGLBrauwbOfS9kg3wWvYwCNuVcgQ-KMVtKxWvbV9cy87wRohBHJL3O93Lpfc4WAxzMpO-TM6bdKOjcfrvl-C2ehOvNRPAGeNF4NVeIMWrBfOsvcsWp8kEjEvWDWtAdIoV8OU_4EVcUijmNGdl4K4FVSC5g2yKOScc7ydhoG8j1HcR6tt8NHB9F6FuS9-LP2387tpnVoAPOwDLMq8dJp2tw2BxcAntrIfo_vPFL0zTq5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215709806</pqid></control><display><type>article</type><title>New Insights into the Allosteric Mechanism of Human Hemoglobin from Molecular Dynamics Simulations</title><source>PubMed Central</source><creator>Mouawad, Liliane ; Perahia, David ; Robert, Charles H. ; Guilbert, Christophe</creator><creatorcontrib>Mouawad, Liliane ; Perahia, David ; Robert, Charles H. ; Guilbert, Christophe</creatorcontrib><description>It is still difficult to obtain a precise structural description of the transition between the deoxy T-state and oxy R-state conformations of human hemoglobin, despite a large number of experimental studies. We used molecular dynamics with the Path Exploration with Distance Constraints (PEDC) method to provide new insights into the allosteric mechanism at the atomic level, by simulating the T-to-R transition. The T-state molecule in the absence of ligands was seen to have a natural propensity for dimer rotation, which nevertheless would be hampered by steric hindrance in the “joint” region. The binding of a ligand to the
α subunit would prevent such hindrance due to the coupling between this region and the
α proximal histidine, and thus facilitate completion of the dimer rotation. Near the end of this quaternary transition, the “switch” region adopts the R conformation, resulting in a shift of the
β proximal histidine. This leads to a sliding of the
β-heme, the effect of which is to open the
β-heme’s distal side, increasing the accessibility of the Fe atom and thereby the affinity of the protein. Our simulations are globally consistent with the Perutz strereochemical mechanism.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(02)75665-8</identifier><identifier>PMID: 12023247</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Binding Sites ; Biochemistry ; Biophysical Phenomena ; Biophysics ; Dimerization ; Heme - chemistry ; Hemoglobins - chemistry ; Humans ; Hydrogen Bonding ; In Vitro Techniques ; Models, Molecular ; Molecular biology ; Oxyhemoglobins - chemistry ; Protein Conformation ; Protein Structure, Quaternary ; Protein Structure, Secondary ; Proteins ; Rotation ; Thermodynamics</subject><ispartof>Biophysical journal, 2002-06, Vol.82 (6), p.3224-3245</ispartof><rights>2002 The Biophysical Society</rights><rights>Copyright Biophysical Society Jun 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-95233f6593de974eb75dbb6570245b0d3c9702f02d662c85624cb66559a2733d3</citedby><cites>FETCH-LOGICAL-c490t-95233f6593de974eb75dbb6570245b0d3c9702f02d662c85624cb66559a2733d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302112/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302112/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12023247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mouawad, Liliane</creatorcontrib><creatorcontrib>Perahia, David</creatorcontrib><creatorcontrib>Robert, Charles H.</creatorcontrib><creatorcontrib>Guilbert, Christophe</creatorcontrib><title>New Insights into the Allosteric Mechanism of Human Hemoglobin from Molecular Dynamics Simulations</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>It is still difficult to obtain a precise structural description of the transition between the deoxy T-state and oxy R-state conformations of human hemoglobin, despite a large number of experimental studies. We used molecular dynamics with the Path Exploration with Distance Constraints (PEDC) method to provide new insights into the allosteric mechanism at the atomic level, by simulating the T-to-R transition. The T-state molecule in the absence of ligands was seen to have a natural propensity for dimer rotation, which nevertheless would be hampered by steric hindrance in the “joint” region. The binding of a ligand to the
α subunit would prevent such hindrance due to the coupling between this region and the
α proximal histidine, and thus facilitate completion of the dimer rotation. Near the end of this quaternary transition, the “switch” region adopts the R conformation, resulting in a shift of the
β proximal histidine. This leads to a sliding of the
β-heme, the effect of which is to open the
β-heme’s distal side, increasing the accessibility of the Fe atom and thereby the affinity of the protein. Our simulations are globally consistent with the Perutz strereochemical mechanism.</description><subject>Binding Sites</subject><subject>Biochemistry</subject><subject>Biophysical Phenomena</subject><subject>Biophysics</subject><subject>Dimerization</subject><subject>Heme - chemistry</subject><subject>Hemoglobins - chemistry</subject><subject>Humans</subject><subject>Hydrogen Bonding</subject><subject>In Vitro Techniques</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Oxyhemoglobins - chemistry</subject><subject>Protein Conformation</subject><subject>Protein Structure, Quaternary</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Rotation</subject><subject>Thermodynamics</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0EokvhJ4AsDggOgbEdO8kFVJWPrdTCoXC2HGey6yq2Wzsp6r_H7a7Kx4WTR_Yzr-edl5DnDN4yYOrdOQCoStSdfA38TSOVklX7gKyYrHkF0KqHZHWPHJAnOV8AMC6BPSYHjAMXvG5WpP-KP-lJyG6znTN1YY503iI9mqaYZ0zO0jO0WxNc9jSOdL14E-gafdxMsXeBjil6ehYntMtkEv14E4x3NtNz58vF7GLIT8mj0UwZn-3PQ_Lj86fvx-vq9NuXk-Oj08rWHcxVJ7kQo5KdGLBrauwbOfS9kg3wWvYwCNuVcgQ-KMVtKxWvbV9cy87wRohBHJL3O93Lpfc4WAxzMpO-TM6bdKOjcfrvl-C2ehOvNRPAGeNF4NVeIMWrBfOsvcsWp8kEjEvWDWtAdIoV8OU_4EVcUijmNGdl4K4FVSC5g2yKOScc7ydhoG8j1HcR6tt8NHB9F6FuS9-LP2387tpnVoAPOwDLMq8dJp2tw2BxcAntrIfo_vPFL0zTq5g</recordid><startdate>20020601</startdate><enddate>20020601</enddate><creator>Mouawad, Liliane</creator><creator>Perahia, David</creator><creator>Robert, Charles H.</creator><creator>Guilbert, Christophe</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020601</creationdate><title>New Insights into the Allosteric Mechanism of Human Hemoglobin from Molecular Dynamics Simulations</title><author>Mouawad, Liliane ; Perahia, David ; Robert, Charles H. ; Guilbert, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-95233f6593de974eb75dbb6570245b0d3c9702f02d662c85624cb66559a2733d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Binding Sites</topic><topic>Biochemistry</topic><topic>Biophysical Phenomena</topic><topic>Biophysics</topic><topic>Dimerization</topic><topic>Heme - chemistry</topic><topic>Hemoglobins - chemistry</topic><topic>Humans</topic><topic>Hydrogen Bonding</topic><topic>In Vitro Techniques</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Oxyhemoglobins - chemistry</topic><topic>Protein Conformation</topic><topic>Protein Structure, Quaternary</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Rotation</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mouawad, Liliane</creatorcontrib><creatorcontrib>Perahia, David</creatorcontrib><creatorcontrib>Robert, Charles H.</creatorcontrib><creatorcontrib>Guilbert, Christophe</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mouawad, Liliane</au><au>Perahia, David</au><au>Robert, Charles H.</au><au>Guilbert, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Insights into the Allosteric Mechanism of Human Hemoglobin from Molecular Dynamics Simulations</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2002-06-01</date><risdate>2002</risdate><volume>82</volume><issue>6</issue><spage>3224</spage><epage>3245</epage><pages>3224-3245</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>It is still difficult to obtain a precise structural description of the transition between the deoxy T-state and oxy R-state conformations of human hemoglobin, despite a large number of experimental studies. We used molecular dynamics with the Path Exploration with Distance Constraints (PEDC) method to provide new insights into the allosteric mechanism at the atomic level, by simulating the T-to-R transition. The T-state molecule in the absence of ligands was seen to have a natural propensity for dimer rotation, which nevertheless would be hampered by steric hindrance in the “joint” region. The binding of a ligand to the
α subunit would prevent such hindrance due to the coupling between this region and the
α proximal histidine, and thus facilitate completion of the dimer rotation. Near the end of this quaternary transition, the “switch” region adopts the R conformation, resulting in a shift of the
β proximal histidine. This leads to a sliding of the
β-heme, the effect of which is to open the
β-heme’s distal side, increasing the accessibility of the Fe atom and thereby the affinity of the protein. Our simulations are globally consistent with the Perutz strereochemical mechanism.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12023247</pmid><doi>10.1016/S0006-3495(02)75665-8</doi><tpages>22</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2002-06, Vol.82 (6), p.3224-3245 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1302112 |
source | PubMed Central |
subjects | Binding Sites Biochemistry Biophysical Phenomena Biophysics Dimerization Heme - chemistry Hemoglobins - chemistry Humans Hydrogen Bonding In Vitro Techniques Models, Molecular Molecular biology Oxyhemoglobins - chemistry Protein Conformation Protein Structure, Quaternary Protein Structure, Secondary Proteins Rotation Thermodynamics |
title | New Insights into the Allosteric Mechanism of Human Hemoglobin from Molecular Dynamics Simulations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T17%3A56%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Insights%20into%20the%20Allosteric%20Mechanism%20of%20Human%20Hemoglobin%20from%20Molecular%20Dynamics%20Simulations&rft.jtitle=Biophysical%20journal&rft.au=Mouawad,%20Liliane&rft.date=2002-06-01&rft.volume=82&rft.issue=6&rft.spage=3224&rft.epage=3245&rft.pages=3224-3245&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(02)75665-8&rft_dat=%3Cproquest_pubme%3E134245301%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c490t-95233f6593de974eb75dbb6570245b0d3c9702f02d662c85624cb66559a2733d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215709806&rft_id=info:pmid/12023247&rfr_iscdi=true |