Loading…

Molecular Dynamics Simulations of a Hydrated Protein Vectorially Oriented on Polar and Nonpolar Soft Surfaces

We present a collection of molecular dynamics computer simulation studies on a model protein-membrane system, namely a cytochrome c monolayer attached to an organic self-assembled monolayer (SAM). Modifications of the system are explored, including the polarity of the SAM endgroups, the amount of wa...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2002-12, Vol.83 (6), p.2906-2917
Main Authors: Nordgren, C.E., Tobias, D.J., Klein, M.L., Blasie, J.K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c542t-7f815bc68eb8a2b3fa1711374a6ca47e57123e46cf81757b95f9093e2db9384a3
cites cdi_FETCH-LOGICAL-c542t-7f815bc68eb8a2b3fa1711374a6ca47e57123e46cf81757b95f9093e2db9384a3
container_end_page 2917
container_issue 6
container_start_page 2906
container_title Biophysical journal
container_volume 83
creator Nordgren, C.E.
Tobias, D.J.
Klein, M.L.
Blasie, J.K.
description We present a collection of molecular dynamics computer simulation studies on a model protein-membrane system, namely a cytochrome c monolayer attached to an organic self-assembled monolayer (SAM). Modifications of the system are explored, including the polarity of the SAM endgroups, the amount of water present for hydration, and the coordination number of the heme iron atom. Various structural parameters are measured, e.g., the protein radius of gyration and eccentricity, the deviation of the protein backbone from the x-ray crystal structure, the orientation of the protein relative to the SAM surface, and the profile structures of the SAM, protein, and water. The polar SAM appears to interact more strongly with the protein than does the nonpolar SAM. Increased hydration of the system tends to reduce the effects of other parameters. The choice of iron coordination model has a significant effect on the protein structure and the heme orientation. The overall protein structure is largely conserved, except at each end of the sequence and in one loop region. The SAM structure is only perturbed in the region of its direct contact with the protein. Our calculations are in reasonably good agreement with experimental measurements (polarized optical absorption/emission spectroscopy, x-ray interferometry, and neutron interferometry).
doi_str_mv 10.1016/S0006-3495(02)75300-9
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1302375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349502753009</els_id><sourcerecordid>276946711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-7f815bc68eb8a2b3fa1711374a6ca47e57123e46cf81757b95f9093e2db9384a3</originalsourceid><addsrcrecordid>eNqFkUtv1DAQgC0EosvCTwBZHBAcAmM7jpNLESqPIhVaaYGr5TgTcJXYi51U2n-Ps7sqjwsny55vxjPzEfKYwUsGrHq1AYCqEGUjnwN_oaQAKJo7ZMVkyQuAurpLVrfICXmQ0jUA4xLYfXLCeNlUUKkVGT-FAe08mEjf7rwZnU1048b8MLngEw09NfR810UzYUevYpjQefoN7RSiM8Owo5fRoV-CwdOrsBQyvqOfg9_uL5vQT3Qzx95YTA_Jvd4MCR8dzzX5-v7dl7Pz4uLyw8ezNxeFzd1PheprJltb1djWhreiN0wxJlRpKmtKhVIxLrCsbOaUVG0j-wYagbxrG1GXRqzJ6aHudm5H7GxuMJpBb6MbTdzpYJz-O-LdD_093GgmgIu8zDV5diwQw88Z06RHlywOg_EY5qQVV3Wt2AI-_Qe8DnP0eTjNmVTZA-cZkgfIxpBSxP62EwZ6san3NvWiSgPXe5u6yXlP_hzjd9ZRXwZeHwDMy7xxGHWy2YbFzsWsSHfB_eeLX_BIsFE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215708622</pqid></control><display><type>article</type><title>Molecular Dynamics Simulations of a Hydrated Protein Vectorially Oriented on Polar and Nonpolar Soft Surfaces</title><source>PubMed Central</source><creator>Nordgren, C.E. ; Tobias, D.J. ; Klein, M.L. ; Blasie, J.K.</creator><creatorcontrib>Nordgren, C.E. ; Tobias, D.J. ; Klein, M.L. ; Blasie, J.K.</creatorcontrib><description>We present a collection of molecular dynamics computer simulation studies on a model protein-membrane system, namely a cytochrome c monolayer attached to an organic self-assembled monolayer (SAM). Modifications of the system are explored, including the polarity of the SAM endgroups, the amount of water present for hydration, and the coordination number of the heme iron atom. Various structural parameters are measured, e.g., the protein radius of gyration and eccentricity, the deviation of the protein backbone from the x-ray crystal structure, the orientation of the protein relative to the SAM surface, and the profile structures of the SAM, protein, and water. The polar SAM appears to interact more strongly with the protein than does the nonpolar SAM. Increased hydration of the system tends to reduce the effects of other parameters. The choice of iron coordination model has a significant effect on the protein structure and the heme orientation. The overall protein structure is largely conserved, except at each end of the sequence and in one loop region. The SAM structure is only perturbed in the region of its direct contact with the protein. Our calculations are in reasonably good agreement with experimental measurements (polarized optical absorption/emission spectroscopy, x-ray interferometry, and neutron interferometry).</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/S0006-3495(02)75300-9</identifier><identifier>PMID: 12496067</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Binding Sites ; Cell Membrane - chemistry ; Computer Simulation ; Crystallography - methods ; Cytochrome c Group - chemistry ; Electrochemistry - methods ; Heme - chemistry ; Macromolecular Substances ; Membrane Proteins - chemistry ; Models, Molecular ; Molecules ; Protein Binding ; Protein Conformation ; Protein Structure, Secondary ; Proteins ; Saccharomyces cerevisiae - chemistry ; Solvents - chemistry ; Surface Properties ; Temperature ; Water - chemistry</subject><ispartof>Biophysical journal, 2002-12, Vol.83 (6), p.2906-2917</ispartof><rights>2002 The Biophysical Society</rights><rights>Copyright Biophysical Society Dec 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-7f815bc68eb8a2b3fa1711374a6ca47e57123e46cf81757b95f9093e2db9384a3</citedby><cites>FETCH-LOGICAL-c542t-7f815bc68eb8a2b3fa1711374a6ca47e57123e46cf81757b95f9093e2db9384a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302375/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1302375/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12496067$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nordgren, C.E.</creatorcontrib><creatorcontrib>Tobias, D.J.</creatorcontrib><creatorcontrib>Klein, M.L.</creatorcontrib><creatorcontrib>Blasie, J.K.</creatorcontrib><title>Molecular Dynamics Simulations of a Hydrated Protein Vectorially Oriented on Polar and Nonpolar Soft Surfaces</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>We present a collection of molecular dynamics computer simulation studies on a model protein-membrane system, namely a cytochrome c monolayer attached to an organic self-assembled monolayer (SAM). Modifications of the system are explored, including the polarity of the SAM endgroups, the amount of water present for hydration, and the coordination number of the heme iron atom. Various structural parameters are measured, e.g., the protein radius of gyration and eccentricity, the deviation of the protein backbone from the x-ray crystal structure, the orientation of the protein relative to the SAM surface, and the profile structures of the SAM, protein, and water. The polar SAM appears to interact more strongly with the protein than does the nonpolar SAM. Increased hydration of the system tends to reduce the effects of other parameters. The choice of iron coordination model has a significant effect on the protein structure and the heme orientation. The overall protein structure is largely conserved, except at each end of the sequence and in one loop region. The SAM structure is only perturbed in the region of its direct contact with the protein. Our calculations are in reasonably good agreement with experimental measurements (polarized optical absorption/emission spectroscopy, x-ray interferometry, and neutron interferometry).</description><subject>Binding Sites</subject><subject>Cell Membrane - chemistry</subject><subject>Computer Simulation</subject><subject>Crystallography - methods</subject><subject>Cytochrome c Group - chemistry</subject><subject>Electrochemistry - methods</subject><subject>Heme - chemistry</subject><subject>Macromolecular Substances</subject><subject>Membrane Proteins - chemistry</subject><subject>Models, Molecular</subject><subject>Molecules</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Structure, Secondary</subject><subject>Proteins</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Solvents - chemistry</subject><subject>Surface Properties</subject><subject>Temperature</subject><subject>Water - chemistry</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkUtv1DAQgC0EosvCTwBZHBAcAmM7jpNLESqPIhVaaYGr5TgTcJXYi51U2n-Ps7sqjwsny55vxjPzEfKYwUsGrHq1AYCqEGUjnwN_oaQAKJo7ZMVkyQuAurpLVrfICXmQ0jUA4xLYfXLCeNlUUKkVGT-FAe08mEjf7rwZnU1048b8MLngEw09NfR810UzYUevYpjQefoN7RSiM8Owo5fRoV-CwdOrsBQyvqOfg9_uL5vQT3Qzx95YTA_Jvd4MCR8dzzX5-v7dl7Pz4uLyw8ezNxeFzd1PheprJltb1djWhreiN0wxJlRpKmtKhVIxLrCsbOaUVG0j-wYagbxrG1GXRqzJ6aHudm5H7GxuMJpBb6MbTdzpYJz-O-LdD_093GgmgIu8zDV5diwQw88Z06RHlywOg_EY5qQVV3Wt2AI-_Qe8DnP0eTjNmVTZA-cZkgfIxpBSxP62EwZ6san3NvWiSgPXe5u6yXlP_hzjd9ZRXwZeHwDMy7xxGHWy2YbFzsWsSHfB_eeLX_BIsFE</recordid><startdate>20021201</startdate><enddate>20021201</enddate><creator>Nordgren, C.E.</creator><creator>Tobias, D.J.</creator><creator>Klein, M.L.</creator><creator>Blasie, J.K.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20021201</creationdate><title>Molecular Dynamics Simulations of a Hydrated Protein Vectorially Oriented on Polar and Nonpolar Soft Surfaces</title><author>Nordgren, C.E. ; Tobias, D.J. ; Klein, M.L. ; Blasie, J.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-7f815bc68eb8a2b3fa1711374a6ca47e57123e46cf81757b95f9093e2db9384a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Binding Sites</topic><topic>Cell Membrane - chemistry</topic><topic>Computer Simulation</topic><topic>Crystallography - methods</topic><topic>Cytochrome c Group - chemistry</topic><topic>Electrochemistry - methods</topic><topic>Heme - chemistry</topic><topic>Macromolecular Substances</topic><topic>Membrane Proteins - chemistry</topic><topic>Models, Molecular</topic><topic>Molecules</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Structure, Secondary</topic><topic>Proteins</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Solvents - chemistry</topic><topic>Surface Properties</topic><topic>Temperature</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nordgren, C.E.</creatorcontrib><creatorcontrib>Tobias, D.J.</creatorcontrib><creatorcontrib>Klein, M.L.</creatorcontrib><creatorcontrib>Blasie, J.K.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep (ProQuest)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nordgren, C.E.</au><au>Tobias, D.J.</au><au>Klein, M.L.</au><au>Blasie, J.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular Dynamics Simulations of a Hydrated Protein Vectorially Oriented on Polar and Nonpolar Soft Surfaces</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2002-12-01</date><risdate>2002</risdate><volume>83</volume><issue>6</issue><spage>2906</spage><epage>2917</epage><pages>2906-2917</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>We present a collection of molecular dynamics computer simulation studies on a model protein-membrane system, namely a cytochrome c monolayer attached to an organic self-assembled monolayer (SAM). Modifications of the system are explored, including the polarity of the SAM endgroups, the amount of water present for hydration, and the coordination number of the heme iron atom. Various structural parameters are measured, e.g., the protein radius of gyration and eccentricity, the deviation of the protein backbone from the x-ray crystal structure, the orientation of the protein relative to the SAM surface, and the profile structures of the SAM, protein, and water. The polar SAM appears to interact more strongly with the protein than does the nonpolar SAM. Increased hydration of the system tends to reduce the effects of other parameters. The choice of iron coordination model has a significant effect on the protein structure and the heme orientation. The overall protein structure is largely conserved, except at each end of the sequence and in one loop region. The SAM structure is only perturbed in the region of its direct contact with the protein. Our calculations are in reasonably good agreement with experimental measurements (polarized optical absorption/emission spectroscopy, x-ray interferometry, and neutron interferometry).</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>12496067</pmid><doi>10.1016/S0006-3495(02)75300-9</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2002-12, Vol.83 (6), p.2906-2917
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1302375
source PubMed Central
subjects Binding Sites
Cell Membrane - chemistry
Computer Simulation
Crystallography - methods
Cytochrome c Group - chemistry
Electrochemistry - methods
Heme - chemistry
Macromolecular Substances
Membrane Proteins - chemistry
Models, Molecular
Molecules
Protein Binding
Protein Conformation
Protein Structure, Secondary
Proteins
Saccharomyces cerevisiae - chemistry
Solvents - chemistry
Surface Properties
Temperature
Water - chemistry
title Molecular Dynamics Simulations of a Hydrated Protein Vectorially Oriented on Polar and Nonpolar Soft Surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T20%3A11%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20Dynamics%20Simulations%20of%20a%20Hydrated%20Protein%20Vectorially%20Oriented%20on%20Polar%20and%20Nonpolar%20Soft%20Surfaces&rft.jtitle=Biophysical%20journal&rft.au=Nordgren,%20C.E.&rft.date=2002-12-01&rft.volume=83&rft.issue=6&rft.spage=2906&rft.epage=2917&rft.pages=2906-2917&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/S0006-3495(02)75300-9&rft_dat=%3Cproquest_pubme%3E276946711%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c542t-7f815bc68eb8a2b3fa1711374a6ca47e57123e46cf81757b95f9093e2db9384a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215708622&rft_id=info:pmid/12496067&rfr_iscdi=true