Loading…

Molecular Mechanisms and Kinetics between DNA and DNA Binding Ligands

Mechanical properties of single double-stranded DNA (dsDNA) in the presence of different binding ligands were analyzed in optical-tweezers experiments with subpiconewton force resolution. The binding of ligands to DNA changes the overall mechanic response of the dsDNA molecule. This fundamental prop...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2005-01, Vol.88 (1), p.404-411
Main Authors: Sischka, Andy, Toensing, Katja, Eckel, Rainer, Wilking, Sven David, Sewald, Norbert, Ros, Robert, Anselmetti, Dario
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Mechanical properties of single double-stranded DNA (dsDNA) in the presence of different binding ligands were analyzed in optical-tweezers experiments with subpiconewton force resolution. The binding of ligands to DNA changes the overall mechanic response of the dsDNA molecule. This fundamental property can be used for discrimination and identification of different binding modes and, furthermore, may be relevant for various processes like nucleosome packing or applications like cancer therapy. We compared the effects of the minor groove binder distamycin-A, a major groove binding α-helical peptide, the intercalators ethidium bromide, YO-1, and daunomycin as well as the bisintercalator YOYO-1 on λ-DNA. Binding of molecules to the minor and major groove of dsDNA induces distinct changes in the molecular elasticity compared to the free dsDNA detectable as a shift of the overstretching transition to higher forces. Intercalating molecules affect the molecular mechanics by a complete disappearance of the B-S transition and an associated increase in molecular contour length. Significant force hysteresis effects occurring during stretching/relaxation cycles with velocities >10 nm/s for YOYO-1 and >1000 nm/s for daunomycin. These indicate structural changes in the timescale of minutes for the YOYO-DNA and of seconds for the daunomycin-DNA complexes, respectively.
ISSN:0006-3495
1542-0086
DOI:10.1529/biophysj.103.036293