Loading…
Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation
The riboflavin biosynthesis in bacteria was analyzed using comparative analysis of genes, operons and regulatory elements. A model for regulation based on formation of alternative RNA structures involving the RFN elements is suggested. In Gram‐positive bacteria including actinomycetes, Thermotoga, T...
Saved in:
Published in: | Nucleic acids research 2002-07, Vol.30 (14), p.3141-3151 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c535t-9186e92908c700c696e3a21501baa76d929d439f83680e2ed21517db8aa7c6e33 |
---|---|
cites | |
container_end_page | 3151 |
container_issue | 14 |
container_start_page | 3141 |
container_title | Nucleic acids research |
container_volume | 30 |
creator | Vitreschak, Alexey G. Rodionov, Dmitry A. Mironov, Andrey A. Gelfand, Mikhail S. |
description | The riboflavin biosynthesis in bacteria was analyzed using comparative analysis of genes, operons and regulatory elements. A model for regulation based on formation of alternative RNA structures involving the RFN elements is suggested. In Gram‐positive bacteria including actinomycetes, Thermotoga, Thermus and Deinococcus, the riboflavin metabolism and transport genes are predicted to be regulated by transcriptional attenuation, whereas in most Gram‐negative bacteria, the riboflavin biosynthesis genes seem to be regulated on the level of translation initiation. Several new candidate riboflavin transporters were identified (impX in Desulfitobacterium halfniense and Fusobacterium nucleatum; pnuX in several actinomycetes, including some Corynebacterium species and Strepto myces coelicolor; rfnT in Rhizobiaceae). Traces of a number of likely horizontal transfer events were found: the complete riboflavin operon with the upstream regulatory element was transferred to Haemophilus influenzae and Actinobacillus pleuropneumoniae from some Gram‐positive bacterium; non‐regulated riboflavin operon in Pyrococcus furiousus was likely transferred from Thermotoga; and the RFN element was inserted into the riboflavin operon of Pseudomonas aeruginosa from some other Pseudomonas species, where it had regulated the ribH2 gene. |
doi_str_mv | 10.1093/nar/gkf433 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_135753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>325292871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-9186e92908c700c696e3a21501baa76d929d439f83680e2ed21517db8aa7c6e33</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokNhwwOgiAULpFD_xbEXLNAIKFUlEAIJsbEc52bqNmMPtjNi3h6HjFpgw8qyz3euzvVB6CnBrwhW7MybeLa5GThj99CKMEFrrgS9j1aY4aYmmMsT9Cila4wJJw1_iE4ILRhWYoX2n2EzjSa74KswVNF1YRjN3vmqcyEdfL6C5FJlfF_laHzahZirDXhI1cwYmyE6U3WHRbbR7eZZZryzLNPnl5zBT79vj9GDwYwJnhzPU_T13dsv6_P68uP7D-s3l7VtWJNrRaQARRWWtsXYCiWAGUoaTDpjWtEXqedMDZIJiYFCXzTS9p0sqi0sO0Wvl7m7qdtCb8GXSKPeRbc18aCDcfpvxbsrvQl7TVjTNrP_xdEfw48JUtZblyyMo_EQpqRbojgVgv8XJJILWcIV8Pk_4HWYYvmepCnGgnHZ0gK9XCAbQ0oRhtvEBOu5c10610vnBX7254536LHkAtQL4FKGn7e6iTdatKxt9Pm37_qirPGJXki9Zr8Aws66kQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200634872</pqid></control><display><type>article</type><title>Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation</title><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Vitreschak, Alexey G. ; Rodionov, Dmitry A. ; Mironov, Andrey A. ; Gelfand, Mikhail S.</creator><creatorcontrib>Vitreschak, Alexey G. ; Rodionov, Dmitry A. ; Mironov, Andrey A. ; Gelfand, Mikhail S.</creatorcontrib><description>The riboflavin biosynthesis in bacteria was analyzed using comparative analysis of genes, operons and regulatory elements. A model for regulation based on formation of alternative RNA structures involving the RFN elements is suggested. In Gram‐positive bacteria including actinomycetes, Thermotoga, Thermus and Deinococcus, the riboflavin metabolism and transport genes are predicted to be regulated by transcriptional attenuation, whereas in most Gram‐negative bacteria, the riboflavin biosynthesis genes seem to be regulated on the level of translation initiation. Several new candidate riboflavin transporters were identified (impX in Desulfitobacterium halfniense and Fusobacterium nucleatum; pnuX in several actinomycetes, including some Corynebacterium species and Strepto myces coelicolor; rfnT in Rhizobiaceae). Traces of a number of likely horizontal transfer events were found: the complete riboflavin operon with the upstream regulatory element was transferred to Haemophilus influenzae and Actinobacillus pleuropneumoniae from some Gram‐positive bacterium; non‐regulated riboflavin operon in Pyrococcus furiousus was likely transferred from Thermotoga; and the RFN element was inserted into the riboflavin operon of Pseudomonas aeruginosa from some other Pseudomonas species, where it had regulated the ribH2 gene.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkf433</identifier><identifier>PMID: 12136096</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bacteria - genetics ; Bacteria - metabolism ; Base Sequence ; Biological Transport - genetics ; Gene Expression Regulation, Bacterial ; Genes, Bacterial - genetics ; Genome, Bacterial ; Molecular Sequence Data ; Multienzyme Complexes - genetics ; Multienzyme Complexes - metabolism ; Nucleic Acid Conformation ; Operon - genetics ; Phylogeny ; Protein Biosynthesis ; Regulatory Sequences, Nucleic Acid - genetics ; Riboflavin - biosynthesis ; Riboflavin - metabolism ; Riboflavin Synthase - genetics ; Riboflavin Synthase - metabolism ; RNA, Bacterial - chemistry ; RNA, Bacterial - genetics ; Sequence Homology, Nucleic Acid ; Transcription, Genetic</subject><ispartof>Nucleic acids research, 2002-07, Vol.30 (14), p.3141-3151</ispartof><rights>Copyright Oxford University Press(England) Jul 15, 2002</rights><rights>Copyright © 2002 Oxford University Press 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-9186e92908c700c696e3a21501baa76d929d439f83680e2ed21517db8aa7c6e33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC135753/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC135753/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12136096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vitreschak, Alexey G.</creatorcontrib><creatorcontrib>Rodionov, Dmitry A.</creatorcontrib><creatorcontrib>Mironov, Andrey A.</creatorcontrib><creatorcontrib>Gelfand, Mikhail S.</creatorcontrib><title>Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>The riboflavin biosynthesis in bacteria was analyzed using comparative analysis of genes, operons and regulatory elements. A model for regulation based on formation of alternative RNA structures involving the RFN elements is suggested. In Gram‐positive bacteria including actinomycetes, Thermotoga, Thermus and Deinococcus, the riboflavin metabolism and transport genes are predicted to be regulated by transcriptional attenuation, whereas in most Gram‐negative bacteria, the riboflavin biosynthesis genes seem to be regulated on the level of translation initiation. Several new candidate riboflavin transporters were identified (impX in Desulfitobacterium halfniense and Fusobacterium nucleatum; pnuX in several actinomycetes, including some Corynebacterium species and Strepto myces coelicolor; rfnT in Rhizobiaceae). Traces of a number of likely horizontal transfer events were found: the complete riboflavin operon with the upstream regulatory element was transferred to Haemophilus influenzae and Actinobacillus pleuropneumoniae from some Gram‐positive bacterium; non‐regulated riboflavin operon in Pyrococcus furiousus was likely transferred from Thermotoga; and the RFN element was inserted into the riboflavin operon of Pseudomonas aeruginosa from some other Pseudomonas species, where it had regulated the ribH2 gene.</description><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Base Sequence</subject><subject>Biological Transport - genetics</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes, Bacterial - genetics</subject><subject>Genome, Bacterial</subject><subject>Molecular Sequence Data</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Nucleic Acid Conformation</subject><subject>Operon - genetics</subject><subject>Phylogeny</subject><subject>Protein Biosynthesis</subject><subject>Regulatory Sequences, Nucleic Acid - genetics</subject><subject>Riboflavin - biosynthesis</subject><subject>Riboflavin - metabolism</subject><subject>Riboflavin Synthase - genetics</subject><subject>Riboflavin Synthase - metabolism</subject><subject>RNA, Bacterial - chemistry</subject><subject>RNA, Bacterial - genetics</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Transcription, Genetic</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS0EokNhwwOgiAULpFD_xbEXLNAIKFUlEAIJsbEc52bqNmMPtjNi3h6HjFpgw8qyz3euzvVB6CnBrwhW7MybeLa5GThj99CKMEFrrgS9j1aY4aYmmMsT9Cila4wJJw1_iE4ILRhWYoX2n2EzjSa74KswVNF1YRjN3vmqcyEdfL6C5FJlfF_laHzahZirDXhI1cwYmyE6U3WHRbbR7eZZZryzLNPnl5zBT79vj9GDwYwJnhzPU_T13dsv6_P68uP7D-s3l7VtWJNrRaQARRWWtsXYCiWAGUoaTDpjWtEXqedMDZIJiYFCXzTS9p0sqi0sO0Wvl7m7qdtCb8GXSKPeRbc18aCDcfpvxbsrvQl7TVjTNrP_xdEfw48JUtZblyyMo_EQpqRbojgVgv8XJJILWcIV8Pk_4HWYYvmepCnGgnHZ0gK9XCAbQ0oRhtvEBOu5c10610vnBX7254536LHkAtQL4FKGn7e6iTdatKxt9Pm37_qirPGJXki9Zr8Aws66kQ</recordid><startdate>20020715</startdate><enddate>20020715</enddate><creator>Vitreschak, Alexey G.</creator><creator>Rodionov, Dmitry A.</creator><creator>Mironov, Andrey A.</creator><creator>Gelfand, Mikhail S.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020715</creationdate><title>Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation</title><author>Vitreschak, Alexey G. ; Rodionov, Dmitry A. ; Mironov, Andrey A. ; Gelfand, Mikhail S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-9186e92908c700c696e3a21501baa76d929d439f83680e2ed21517db8aa7c6e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Base Sequence</topic><topic>Biological Transport - genetics</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes, Bacterial - genetics</topic><topic>Genome, Bacterial</topic><topic>Molecular Sequence Data</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Nucleic Acid Conformation</topic><topic>Operon - genetics</topic><topic>Phylogeny</topic><topic>Protein Biosynthesis</topic><topic>Regulatory Sequences, Nucleic Acid - genetics</topic><topic>Riboflavin - biosynthesis</topic><topic>Riboflavin - metabolism</topic><topic>Riboflavin Synthase - genetics</topic><topic>Riboflavin Synthase - metabolism</topic><topic>RNA, Bacterial - chemistry</topic><topic>RNA, Bacterial - genetics</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vitreschak, Alexey G.</creatorcontrib><creatorcontrib>Rodionov, Dmitry A.</creatorcontrib><creatorcontrib>Mironov, Andrey A.</creatorcontrib><creatorcontrib>Gelfand, Mikhail S.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vitreschak, Alexey G.</au><au>Rodionov, Dmitry A.</au><au>Mironov, Andrey A.</au><au>Gelfand, Mikhail S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2002-07-15</date><risdate>2002</risdate><volume>30</volume><issue>14</issue><spage>3141</spage><epage>3151</epage><pages>3141-3151</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>The riboflavin biosynthesis in bacteria was analyzed using comparative analysis of genes, operons and regulatory elements. A model for regulation based on formation of alternative RNA structures involving the RFN elements is suggested. In Gram‐positive bacteria including actinomycetes, Thermotoga, Thermus and Deinococcus, the riboflavin metabolism and transport genes are predicted to be regulated by transcriptional attenuation, whereas in most Gram‐negative bacteria, the riboflavin biosynthesis genes seem to be regulated on the level of translation initiation. Several new candidate riboflavin transporters were identified (impX in Desulfitobacterium halfniense and Fusobacterium nucleatum; pnuX in several actinomycetes, including some Corynebacterium species and Strepto myces coelicolor; rfnT in Rhizobiaceae). Traces of a number of likely horizontal transfer events were found: the complete riboflavin operon with the upstream regulatory element was transferred to Haemophilus influenzae and Actinobacillus pleuropneumoniae from some Gram‐positive bacterium; non‐regulated riboflavin operon in Pyrococcus furiousus was likely transferred from Thermotoga; and the RFN element was inserted into the riboflavin operon of Pseudomonas aeruginosa from some other Pseudomonas species, where it had regulated the ribH2 gene.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>12136096</pmid><doi>10.1093/nar/gkf433</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2002-07, Vol.30 (14), p.3141-3151 |
issn | 0305-1048 1362-4962 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_135753 |
source | Oxford Journals Open Access Collection; PubMed Central |
subjects | Bacteria - genetics Bacteria - metabolism Base Sequence Biological Transport - genetics Gene Expression Regulation, Bacterial Genes, Bacterial - genetics Genome, Bacterial Molecular Sequence Data Multienzyme Complexes - genetics Multienzyme Complexes - metabolism Nucleic Acid Conformation Operon - genetics Phylogeny Protein Biosynthesis Regulatory Sequences, Nucleic Acid - genetics Riboflavin - biosynthesis Riboflavin - metabolism Riboflavin Synthase - genetics Riboflavin Synthase - metabolism RNA, Bacterial - chemistry RNA, Bacterial - genetics Sequence Homology, Nucleic Acid Transcription, Genetic |
title | Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20riboflavin%20biosynthesis%20and%20transport%20genes%20in%20bacteria%20by%20transcriptional%20and%20translational%20attenuation&rft.jtitle=Nucleic%20acids%20research&rft.au=Vitreschak,%20Alexey%20G.&rft.date=2002-07-15&rft.volume=30&rft.issue=14&rft.spage=3141&rft.epage=3151&rft.pages=3141-3151&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkf433&rft_dat=%3Cproquest_pubme%3E325292871%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c535t-9186e92908c700c696e3a21501baa76d929d439f83680e2ed21517db8aa7c6e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200634872&rft_id=info:pmid/12136096&rfr_iscdi=true |