Loading…

Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation

The riboflavin biosynthesis in bacteria was analyzed using comparative analysis of genes, operons and regulatory elements. A model for regulation based on formation of alternative RNA structures involving the RFN elements is suggested. In Gram‐positive bacteria including actinomycetes, Thermotoga, T...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2002-07, Vol.30 (14), p.3141-3151
Main Authors: Vitreschak, Alexey G., Rodionov, Dmitry A., Mironov, Andrey A., Gelfand, Mikhail S.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c535t-9186e92908c700c696e3a21501baa76d929d439f83680e2ed21517db8aa7c6e33
cites
container_end_page 3151
container_issue 14
container_start_page 3141
container_title Nucleic acids research
container_volume 30
creator Vitreschak, Alexey G.
Rodionov, Dmitry A.
Mironov, Andrey A.
Gelfand, Mikhail S.
description The riboflavin biosynthesis in bacteria was analyzed using comparative analysis of genes, operons and regulatory elements. A model for regulation based on formation of alternative RNA structures involving the RFN elements is suggested. In Gram‐positive bacteria including actinomycetes, Thermotoga, Thermus and Deinococcus, the riboflavin metabolism and transport genes are predicted to be regulated by transcriptional attenuation, whereas in most Gram‐negative bacteria, the riboflavin biosynthesis genes seem to be regulated on the level of translation initiation. Several new candidate riboflavin transporters were identified (impX in Desulfitobacterium halfniense and Fusobacterium nucleatum; pnuX in several actinomycetes, including some Corynebacterium species and Strepto myces coelicolor; rfnT in Rhizobiaceae). Traces of a number of likely horizontal transfer events were found: the complete riboflavin operon with the upstream regulatory element was transferred to Haemophilus influenzae and Actinobacillus pleuropneumoniae from some Gram‐positive bacterium; non‐regulated riboflavin operon in Pyrococcus furiousus was likely transferred from Thermotoga; and the RFN element was inserted into the riboflavin operon of Pseudomonas aeruginosa from some other Pseudomonas species, where it had regulated the ribH2 gene.
doi_str_mv 10.1093/nar/gkf433
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_135753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>325292871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-9186e92908c700c696e3a21501baa76d929d439f83680e2ed21517db8aa7c6e33</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokNhwwOgiAULpFD_xbEXLNAIKFUlEAIJsbEc52bqNmMPtjNi3h6HjFpgw8qyz3euzvVB6CnBrwhW7MybeLa5GThj99CKMEFrrgS9j1aY4aYmmMsT9Cila4wJJw1_iE4ILRhWYoX2n2EzjSa74KswVNF1YRjN3vmqcyEdfL6C5FJlfF_laHzahZirDXhI1cwYmyE6U3WHRbbR7eZZZryzLNPnl5zBT79vj9GDwYwJnhzPU_T13dsv6_P68uP7D-s3l7VtWJNrRaQARRWWtsXYCiWAGUoaTDpjWtEXqedMDZIJiYFCXzTS9p0sqi0sO0Wvl7m7qdtCb8GXSKPeRbc18aCDcfpvxbsrvQl7TVjTNrP_xdEfw48JUtZblyyMo_EQpqRbojgVgv8XJJILWcIV8Pk_4HWYYvmepCnGgnHZ0gK9XCAbQ0oRhtvEBOu5c10610vnBX7254536LHkAtQL4FKGn7e6iTdatKxt9Pm37_qirPGJXki9Zr8Aws66kQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200634872</pqid></control><display><type>article</type><title>Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation</title><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Vitreschak, Alexey G. ; Rodionov, Dmitry A. ; Mironov, Andrey A. ; Gelfand, Mikhail S.</creator><creatorcontrib>Vitreschak, Alexey G. ; Rodionov, Dmitry A. ; Mironov, Andrey A. ; Gelfand, Mikhail S.</creatorcontrib><description>The riboflavin biosynthesis in bacteria was analyzed using comparative analysis of genes, operons and regulatory elements. A model for regulation based on formation of alternative RNA structures involving the RFN elements is suggested. In Gram‐positive bacteria including actinomycetes, Thermotoga, Thermus and Deinococcus, the riboflavin metabolism and transport genes are predicted to be regulated by transcriptional attenuation, whereas in most Gram‐negative bacteria, the riboflavin biosynthesis genes seem to be regulated on the level of translation initiation. Several new candidate riboflavin transporters were identified (impX in Desulfitobacterium halfniense and Fusobacterium nucleatum; pnuX in several actinomycetes, including some Corynebacterium species and Strepto myces coelicolor; rfnT in Rhizobiaceae). Traces of a number of likely horizontal transfer events were found: the complete riboflavin operon with the upstream regulatory element was transferred to Haemophilus influenzae and Actinobacillus pleuropneumoniae from some Gram‐positive bacterium; non‐regulated riboflavin operon in Pyrococcus furiousus was likely transferred from Thermotoga; and the RFN element was inserted into the riboflavin operon of Pseudomonas aeruginosa from some other Pseudomonas species, where it had regulated the ribH2 gene.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkf433</identifier><identifier>PMID: 12136096</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bacteria - genetics ; Bacteria - metabolism ; Base Sequence ; Biological Transport - genetics ; Gene Expression Regulation, Bacterial ; Genes, Bacterial - genetics ; Genome, Bacterial ; Molecular Sequence Data ; Multienzyme Complexes - genetics ; Multienzyme Complexes - metabolism ; Nucleic Acid Conformation ; Operon - genetics ; Phylogeny ; Protein Biosynthesis ; Regulatory Sequences, Nucleic Acid - genetics ; Riboflavin - biosynthesis ; Riboflavin - metabolism ; Riboflavin Synthase - genetics ; Riboflavin Synthase - metabolism ; RNA, Bacterial - chemistry ; RNA, Bacterial - genetics ; Sequence Homology, Nucleic Acid ; Transcription, Genetic</subject><ispartof>Nucleic acids research, 2002-07, Vol.30 (14), p.3141-3151</ispartof><rights>Copyright Oxford University Press(England) Jul 15, 2002</rights><rights>Copyright © 2002 Oxford University Press 2002</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-9186e92908c700c696e3a21501baa76d929d439f83680e2ed21517db8aa7c6e33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC135753/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC135753/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12136096$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vitreschak, Alexey G.</creatorcontrib><creatorcontrib>Rodionov, Dmitry A.</creatorcontrib><creatorcontrib>Mironov, Andrey A.</creatorcontrib><creatorcontrib>Gelfand, Mikhail S.</creatorcontrib><title>Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>The riboflavin biosynthesis in bacteria was analyzed using comparative analysis of genes, operons and regulatory elements. A model for regulation based on formation of alternative RNA structures involving the RFN elements is suggested. In Gram‐positive bacteria including actinomycetes, Thermotoga, Thermus and Deinococcus, the riboflavin metabolism and transport genes are predicted to be regulated by transcriptional attenuation, whereas in most Gram‐negative bacteria, the riboflavin biosynthesis genes seem to be regulated on the level of translation initiation. Several new candidate riboflavin transporters were identified (impX in Desulfitobacterium halfniense and Fusobacterium nucleatum; pnuX in several actinomycetes, including some Corynebacterium species and Strepto myces coelicolor; rfnT in Rhizobiaceae). Traces of a number of likely horizontal transfer events were found: the complete riboflavin operon with the upstream regulatory element was transferred to Haemophilus influenzae and Actinobacillus pleuropneumoniae from some Gram‐positive bacterium; non‐regulated riboflavin operon in Pyrococcus furiousus was likely transferred from Thermotoga; and the RFN element was inserted into the riboflavin operon of Pseudomonas aeruginosa from some other Pseudomonas species, where it had regulated the ribH2 gene.</description><subject>Bacteria - genetics</subject><subject>Bacteria - metabolism</subject><subject>Base Sequence</subject><subject>Biological Transport - genetics</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Genes, Bacterial - genetics</subject><subject>Genome, Bacterial</subject><subject>Molecular Sequence Data</subject><subject>Multienzyme Complexes - genetics</subject><subject>Multienzyme Complexes - metabolism</subject><subject>Nucleic Acid Conformation</subject><subject>Operon - genetics</subject><subject>Phylogeny</subject><subject>Protein Biosynthesis</subject><subject>Regulatory Sequences, Nucleic Acid - genetics</subject><subject>Riboflavin - biosynthesis</subject><subject>Riboflavin - metabolism</subject><subject>Riboflavin Synthase - genetics</subject><subject>Riboflavin Synthase - metabolism</subject><subject>RNA, Bacterial - chemistry</subject><subject>RNA, Bacterial - genetics</subject><subject>Sequence Homology, Nucleic Acid</subject><subject>Transcription, Genetic</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkc1u1DAUhS0EokNhwwOgiAULpFD_xbEXLNAIKFUlEAIJsbEc52bqNmMPtjNi3h6HjFpgw8qyz3euzvVB6CnBrwhW7MybeLa5GThj99CKMEFrrgS9j1aY4aYmmMsT9Cila4wJJw1_iE4ILRhWYoX2n2EzjSa74KswVNF1YRjN3vmqcyEdfL6C5FJlfF_laHzahZirDXhI1cwYmyE6U3WHRbbR7eZZZryzLNPnl5zBT79vj9GDwYwJnhzPU_T13dsv6_P68uP7D-s3l7VtWJNrRaQARRWWtsXYCiWAGUoaTDpjWtEXqedMDZIJiYFCXzTS9p0sqi0sO0Wvl7m7qdtCb8GXSKPeRbc18aCDcfpvxbsrvQl7TVjTNrP_xdEfw48JUtZblyyMo_EQpqRbojgVgv8XJJILWcIV8Pk_4HWYYvmepCnGgnHZ0gK9XCAbQ0oRhtvEBOu5c10610vnBX7254536LHkAtQL4FKGn7e6iTdatKxt9Pm37_qirPGJXki9Zr8Aws66kQ</recordid><startdate>20020715</startdate><enddate>20020715</enddate><creator>Vitreschak, Alexey G.</creator><creator>Rodionov, Dmitry A.</creator><creator>Mironov, Andrey A.</creator><creator>Gelfand, Mikhail S.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20020715</creationdate><title>Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation</title><author>Vitreschak, Alexey G. ; Rodionov, Dmitry A. ; Mironov, Andrey A. ; Gelfand, Mikhail S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-9186e92908c700c696e3a21501baa76d929d439f83680e2ed21517db8aa7c6e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Bacteria - genetics</topic><topic>Bacteria - metabolism</topic><topic>Base Sequence</topic><topic>Biological Transport - genetics</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Genes, Bacterial - genetics</topic><topic>Genome, Bacterial</topic><topic>Molecular Sequence Data</topic><topic>Multienzyme Complexes - genetics</topic><topic>Multienzyme Complexes - metabolism</topic><topic>Nucleic Acid Conformation</topic><topic>Operon - genetics</topic><topic>Phylogeny</topic><topic>Protein Biosynthesis</topic><topic>Regulatory Sequences, Nucleic Acid - genetics</topic><topic>Riboflavin - biosynthesis</topic><topic>Riboflavin - metabolism</topic><topic>Riboflavin Synthase - genetics</topic><topic>Riboflavin Synthase - metabolism</topic><topic>RNA, Bacterial - chemistry</topic><topic>RNA, Bacterial - genetics</topic><topic>Sequence Homology, Nucleic Acid</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vitreschak, Alexey G.</creatorcontrib><creatorcontrib>Rodionov, Dmitry A.</creatorcontrib><creatorcontrib>Mironov, Andrey A.</creatorcontrib><creatorcontrib>Gelfand, Mikhail S.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vitreschak, Alexey G.</au><au>Rodionov, Dmitry A.</au><au>Mironov, Andrey A.</au><au>Gelfand, Mikhail S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2002-07-15</date><risdate>2002</risdate><volume>30</volume><issue>14</issue><spage>3141</spage><epage>3151</epage><pages>3141-3151</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>The riboflavin biosynthesis in bacteria was analyzed using comparative analysis of genes, operons and regulatory elements. A model for regulation based on formation of alternative RNA structures involving the RFN elements is suggested. In Gram‐positive bacteria including actinomycetes, Thermotoga, Thermus and Deinococcus, the riboflavin metabolism and transport genes are predicted to be regulated by transcriptional attenuation, whereas in most Gram‐negative bacteria, the riboflavin biosynthesis genes seem to be regulated on the level of translation initiation. Several new candidate riboflavin transporters were identified (impX in Desulfitobacterium halfniense and Fusobacterium nucleatum; pnuX in several actinomycetes, including some Corynebacterium species and Strepto myces coelicolor; rfnT in Rhizobiaceae). Traces of a number of likely horizontal transfer events were found: the complete riboflavin operon with the upstream regulatory element was transferred to Haemophilus influenzae and Actinobacillus pleuropneumoniae from some Gram‐positive bacterium; non‐regulated riboflavin operon in Pyrococcus furiousus was likely transferred from Thermotoga; and the RFN element was inserted into the riboflavin operon of Pseudomonas aeruginosa from some other Pseudomonas species, where it had regulated the ribH2 gene.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>12136096</pmid><doi>10.1093/nar/gkf433</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2002-07, Vol.30 (14), p.3141-3151
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_135753
source Oxford Journals Open Access Collection; PubMed Central
subjects Bacteria - genetics
Bacteria - metabolism
Base Sequence
Biological Transport - genetics
Gene Expression Regulation, Bacterial
Genes, Bacterial - genetics
Genome, Bacterial
Molecular Sequence Data
Multienzyme Complexes - genetics
Multienzyme Complexes - metabolism
Nucleic Acid Conformation
Operon - genetics
Phylogeny
Protein Biosynthesis
Regulatory Sequences, Nucleic Acid - genetics
Riboflavin - biosynthesis
Riboflavin - metabolism
Riboflavin Synthase - genetics
Riboflavin Synthase - metabolism
RNA, Bacterial - chemistry
RNA, Bacterial - genetics
Sequence Homology, Nucleic Acid
Transcription, Genetic
title Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T05%3A19%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regulation%20of%20riboflavin%20biosynthesis%20and%20transport%20genes%20in%20bacteria%20by%20transcriptional%20and%20translational%20attenuation&rft.jtitle=Nucleic%20acids%20research&rft.au=Vitreschak,%20Alexey%20G.&rft.date=2002-07-15&rft.volume=30&rft.issue=14&rft.spage=3141&rft.epage=3151&rft.pages=3141-3151&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkf433&rft_dat=%3Cproquest_pubme%3E325292871%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c535t-9186e92908c700c696e3a21501baa76d929d439f83680e2ed21517db8aa7c6e33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=200634872&rft_id=info:pmid/12136096&rfr_iscdi=true