Loading…

Brush Effects on DNA Chips: Thermodynamics, Kinetics, and Design Guidelines

In biology experiments, oligonucleotide microarrays are contacted with a solution of long nucleic acid targets. The hybridized probes thus carry long tails. When the surface density of the oligonucleotide probes is high enough, the progress of hybridization gives rise to a polyelectrolyte brush due...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2005-08, Vol.89 (2), p.796-811
Main Authors: Halperin, A., Buhot, A., Zhulina, E.B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c584t-c2bb12f22b8017e98059619455a3058ed1e9afbe605a51c16e74875172e07b8b3
cites cdi_FETCH-LOGICAL-c584t-c2bb12f22b8017e98059619455a3058ed1e9afbe605a51c16e74875172e07b8b3
container_end_page 811
container_issue 2
container_start_page 796
container_title Biophysical journal
container_volume 89
creator Halperin, A.
Buhot, A.
Zhulina, E.B.
description In biology experiments, oligonucleotide microarrays are contacted with a solution of long nucleic acid targets. The hybridized probes thus carry long tails. When the surface density of the oligonucleotide probes is high enough, the progress of hybridization gives rise to a polyelectrolyte brush due to mutual crowding of the nucleic acid tails. The free-energy penalty associated with the brush modifies both the hybridization isotherms and the rate equations: the attainable hybridization is lowered significantly as is the hybridization rate. When the equilibrium hybridization fraction, x eq, is low, the hybridization follows a Langmuir type isotherm, x eq/(1 - x eq) = c t K where c t is the target concentration and K is the equilibrium constant. K is smaller than its bulk value by a factor ( n/ N) 2/5 due to wall effects where n and N denote the number of bases in the probe and the target. At higher x eq, when the brush is formed, the leading correction is x eq / ( 1 − x eq ) = c t K ⁡ exp ⁡ − c o n s t ' x eq 2 / 3 − x B 2 / 3 where x B corresponds to the onset of the brush regime. The denaturation rate constant in the two regimes is identical. However, the hybridization rate constant in the brush regime is lower, the leading correction being exp ⁡ − c o n s t ' x 2 / 3 − x B 2 / 3
doi_str_mv 10.1529/biophysj.105.063479
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1366630</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349505727326</els_id><sourcerecordid>883219511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-c2bb12f22b8017e98059619455a3058ed1e9afbe605a51c16e74875172e07b8b3</originalsourceid><addsrcrecordid>eNp9kV-L1DAUxYMo7rj6CQQpPgiCHW_SJk0FhXF23ZUd9GV9Dml6u83QJmPSDsy3t2PHf_vgU0Lu75xD7iHkOYUl5ax8W1m_aw9xu6TAlyCyvCgfkAXlOUsBpHhIFgAg0iwv-Rl5EuMWgDIO9DE5o7wEySVdkJuPYYxtctk0aIaYeJdcfFkl69bu4rvktsXQ-_rgdG9NfJPcWIfDz5t2dXKB0d655Gq0NXbTJD4ljxrdRXx2Os_Jt0-Xt-vrdPP16vN6tUkNl_mQGlZVlDWMVRJogaUEXgpa5pzrDLjEmmKpmwoFcM2poQKLXBacFgyhqGSVnZMPs-9urHqsDboh6E7tgu11OCivrfp34myr7vxe0UwIkcFk8Ho2aO_JrlcbZVArYDyjvIA9ndhXp7Dgv48YB9XbaLDrtEM_RiUkSJnlbAJf3gO3fgxuWoRiRy8u5NEtmyETfIwBm9_xFNSxVfWr1emBq7nVSfXi7w__0ZxqnID3M4DT2vcWg4rGojNY2zD1qmpv_xvwAzoisu0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215705681</pqid></control><display><type>article</type><title>Brush Effects on DNA Chips: Thermodynamics, Kinetics, and Design Guidelines</title><source>PubMed Central</source><creator>Halperin, A. ; Buhot, A. ; Zhulina, E.B.</creator><creatorcontrib>Halperin, A. ; Buhot, A. ; Zhulina, E.B.</creatorcontrib><description>In biology experiments, oligonucleotide microarrays are contacted with a solution of long nucleic acid targets. The hybridized probes thus carry long tails. When the surface density of the oligonucleotide probes is high enough, the progress of hybridization gives rise to a polyelectrolyte brush due to mutual crowding of the nucleic acid tails. The free-energy penalty associated with the brush modifies both the hybridization isotherms and the rate equations: the attainable hybridization is lowered significantly as is the hybridization rate. When the equilibrium hybridization fraction, x eq, is low, the hybridization follows a Langmuir type isotherm, x eq/(1 - x eq) = c t K where c t is the target concentration and K is the equilibrium constant. K is smaller than its bulk value by a factor ( n/ N) 2/5 due to wall effects where n and N denote the number of bases in the probe and the target. At higher x eq, when the brush is formed, the leading correction is x eq / ( 1 − x eq ) = c t K ⁡ exp ⁡ − c o n s t ' x eq 2 / 3 − x B 2 / 3 where x B corresponds to the onset of the brush regime. The denaturation rate constant in the two regimes is identical. However, the hybridization rate constant in the brush regime is lower, the leading correction being exp ⁡ − c o n s t ' x 2 / 3 − x B 2 / 3</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.105.063479</identifier><identifier>PMID: 15908581</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biophysical Theory and Modeling ; Biotechnology ; Computer Simulation ; Computer-Aided Design ; Deoxyribonucleic acid ; DNA ; DNA - analysis ; DNA - chemistry ; DNA Probes - analysis ; DNA Probes - chemistry ; Equipment Design - methods ; Equipment Failure Analysis ; Gene expression ; Hybridization ; In Situ Hybridization - methods ; Kinetics ; Life Sciences ; Models, Chemical ; Nucleic Acid Denaturation ; Oligonucleotide Array Sequence Analysis - instrumentation ; Oligonucleotide Array Sequence Analysis - methods ; Thermodynamics</subject><ispartof>Biophysical journal, 2005-08, Vol.89 (2), p.796-811</ispartof><rights>2005 The Biophysical Society</rights><rights>Copyright Biophysical Society Aug 2005</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2005, Biophysical Society 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-c2bb12f22b8017e98059619455a3058ed1e9afbe605a51c16e74875172e07b8b3</citedby><cites>FETCH-LOGICAL-c584t-c2bb12f22b8017e98059619455a3058ed1e9afbe605a51c16e74875172e07b8b3</cites><orcidid>0000-0001-7643-4305</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1366630/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1366630/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15908581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cea.hal.science/cea-02531570$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Halperin, A.</creatorcontrib><creatorcontrib>Buhot, A.</creatorcontrib><creatorcontrib>Zhulina, E.B.</creatorcontrib><title>Brush Effects on DNA Chips: Thermodynamics, Kinetics, and Design Guidelines</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>In biology experiments, oligonucleotide microarrays are contacted with a solution of long nucleic acid targets. The hybridized probes thus carry long tails. When the surface density of the oligonucleotide probes is high enough, the progress of hybridization gives rise to a polyelectrolyte brush due to mutual crowding of the nucleic acid tails. The free-energy penalty associated with the brush modifies both the hybridization isotherms and the rate equations: the attainable hybridization is lowered significantly as is the hybridization rate. When the equilibrium hybridization fraction, x eq, is low, the hybridization follows a Langmuir type isotherm, x eq/(1 - x eq) = c t K where c t is the target concentration and K is the equilibrium constant. K is smaller than its bulk value by a factor ( n/ N) 2/5 due to wall effects where n and N denote the number of bases in the probe and the target. At higher x eq, when the brush is formed, the leading correction is x eq / ( 1 − x eq ) = c t K ⁡ exp ⁡ − c o n s t ' x eq 2 / 3 − x B 2 / 3 where x B corresponds to the onset of the brush regime. The denaturation rate constant in the two regimes is identical. However, the hybridization rate constant in the brush regime is lower, the leading correction being exp ⁡ − c o n s t ' x 2 / 3 − x B 2 / 3</description><subject>Biophysical Theory and Modeling</subject><subject>Biotechnology</subject><subject>Computer Simulation</subject><subject>Computer-Aided Design</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - analysis</subject><subject>DNA - chemistry</subject><subject>DNA Probes - analysis</subject><subject>DNA Probes - chemistry</subject><subject>Equipment Design - methods</subject><subject>Equipment Failure Analysis</subject><subject>Gene expression</subject><subject>Hybridization</subject><subject>In Situ Hybridization - methods</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Models, Chemical</subject><subject>Nucleic Acid Denaturation</subject><subject>Oligonucleotide Array Sequence Analysis - instrumentation</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Thermodynamics</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kV-L1DAUxYMo7rj6CQQpPgiCHW_SJk0FhXF23ZUd9GV9Dml6u83QJmPSDsy3t2PHf_vgU0Lu75xD7iHkOYUl5ax8W1m_aw9xu6TAlyCyvCgfkAXlOUsBpHhIFgAg0iwv-Rl5EuMWgDIO9DE5o7wEySVdkJuPYYxtctk0aIaYeJdcfFkl69bu4rvktsXQ-_rgdG9NfJPcWIfDz5t2dXKB0d655Gq0NXbTJD4ljxrdRXx2Os_Jt0-Xt-vrdPP16vN6tUkNl_mQGlZVlDWMVRJogaUEXgpa5pzrDLjEmmKpmwoFcM2poQKLXBacFgyhqGSVnZMPs-9urHqsDboh6E7tgu11OCivrfp34myr7vxe0UwIkcFk8Ho2aO_JrlcbZVArYDyjvIA9ndhXp7Dgv48YB9XbaLDrtEM_RiUkSJnlbAJf3gO3fgxuWoRiRy8u5NEtmyETfIwBm9_xFNSxVfWr1emBq7nVSfXi7w__0ZxqnID3M4DT2vcWg4rGojNY2zD1qmpv_xvwAzoisu0</recordid><startdate>20050801</startdate><enddate>20050801</enddate><creator>Halperin, A.</creator><creator>Buhot, A.</creator><creator>Zhulina, E.B.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7643-4305</orcidid></search><sort><creationdate>20050801</creationdate><title>Brush Effects on DNA Chips: Thermodynamics, Kinetics, and Design Guidelines</title><author>Halperin, A. ; Buhot, A. ; Zhulina, E.B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-c2bb12f22b8017e98059619455a3058ed1e9afbe605a51c16e74875172e07b8b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Biophysical Theory and Modeling</topic><topic>Biotechnology</topic><topic>Computer Simulation</topic><topic>Computer-Aided Design</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - analysis</topic><topic>DNA - chemistry</topic><topic>DNA Probes - analysis</topic><topic>DNA Probes - chemistry</topic><topic>Equipment Design - methods</topic><topic>Equipment Failure Analysis</topic><topic>Gene expression</topic><topic>Hybridization</topic><topic>In Situ Hybridization - methods</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Models, Chemical</topic><topic>Nucleic Acid Denaturation</topic><topic>Oligonucleotide Array Sequence Analysis - instrumentation</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halperin, A.</creatorcontrib><creatorcontrib>Buhot, A.</creatorcontrib><creatorcontrib>Zhulina, E.B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library (ProQuest)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halperin, A.</au><au>Buhot, A.</au><au>Zhulina, E.B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brush Effects on DNA Chips: Thermodynamics, Kinetics, and Design Guidelines</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2005-08-01</date><risdate>2005</risdate><volume>89</volume><issue>2</issue><spage>796</spage><epage>811</epage><pages>796-811</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>In biology experiments, oligonucleotide microarrays are contacted with a solution of long nucleic acid targets. The hybridized probes thus carry long tails. When the surface density of the oligonucleotide probes is high enough, the progress of hybridization gives rise to a polyelectrolyte brush due to mutual crowding of the nucleic acid tails. The free-energy penalty associated with the brush modifies both the hybridization isotherms and the rate equations: the attainable hybridization is lowered significantly as is the hybridization rate. When the equilibrium hybridization fraction, x eq, is low, the hybridization follows a Langmuir type isotherm, x eq/(1 - x eq) = c t K where c t is the target concentration and K is the equilibrium constant. K is smaller than its bulk value by a factor ( n/ N) 2/5 due to wall effects where n and N denote the number of bases in the probe and the target. At higher x eq, when the brush is formed, the leading correction is x eq / ( 1 − x eq ) = c t K ⁡ exp ⁡ − c o n s t ' x eq 2 / 3 − x B 2 / 3 where x B corresponds to the onset of the brush regime. The denaturation rate constant in the two regimes is identical. However, the hybridization rate constant in the brush regime is lower, the leading correction being exp ⁡ − c o n s t ' x 2 / 3 − x B 2 / 3</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15908581</pmid><doi>10.1529/biophysj.105.063479</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7643-4305</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2005-08, Vol.89 (2), p.796-811
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1366630
source PubMed Central
subjects Biophysical Theory and Modeling
Biotechnology
Computer Simulation
Computer-Aided Design
Deoxyribonucleic acid
DNA
DNA - analysis
DNA - chemistry
DNA Probes - analysis
DNA Probes - chemistry
Equipment Design - methods
Equipment Failure Analysis
Gene expression
Hybridization
In Situ Hybridization - methods
Kinetics
Life Sciences
Models, Chemical
Nucleic Acid Denaturation
Oligonucleotide Array Sequence Analysis - instrumentation
Oligonucleotide Array Sequence Analysis - methods
Thermodynamics
title Brush Effects on DNA Chips: Thermodynamics, Kinetics, and Design Guidelines
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T20%3A40%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brush%20Effects%20on%20DNA%20Chips:%20Thermodynamics,%20Kinetics,%20and%20Design%20Guidelines&rft.jtitle=Biophysical%20journal&rft.au=Halperin,%20A.&rft.date=2005-08-01&rft.volume=89&rft.issue=2&rft.spage=796&rft.epage=811&rft.pages=796-811&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.105.063479&rft_dat=%3Cproquest_pubme%3E883219511%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c584t-c2bb12f22b8017e98059619455a3058ed1e9afbe605a51c16e74875172e07b8b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215705681&rft_id=info:pmid/15908581&rfr_iscdi=true