Loading…

A Consistent Model for Thermal Fluctuations and Protein-Induced Deformations in Lipid Bilayers

We present an elastic Hamiltonian for membrane energetics that captures bilayer undulation and peristaltic deformations over all wavelengths, including the short wavelength protrusion regime. The model implies continuous functional forms for thermal undulation and peristaltic amplitudes as a functio...

Full description

Saved in:
Bibliographic Details
Published in:Biophysical journal 2006-03, Vol.90 (5), p.1501-1520
Main Authors: Brannigan, Grace, Brown, Frank L.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c550t-c173772bd69bc48d7571e4eaae27eb4fb0ad70cace7840d1170b2ad25a40b12b3
cites cdi_FETCH-LOGICAL-c550t-c173772bd69bc48d7571e4eaae27eb4fb0ad70cace7840d1170b2ad25a40b12b3
container_end_page 1520
container_issue 5
container_start_page 1501
container_title Biophysical journal
container_volume 90
creator Brannigan, Grace
Brown, Frank L.H.
description We present an elastic Hamiltonian for membrane energetics that captures bilayer undulation and peristaltic deformations over all wavelengths, including the short wavelength protrusion regime. The model implies continuous functional forms for thermal undulation and peristaltic amplitudes as a function of wavelength and predicts previously overlooked relationships between these curves. Undulation and peristaltic spectra display excellent agreement with data from both atomistic and coarse-grained models over all simulated length scales. Additionally, the model accurately predicts the bilayer’s response to a cylindrical protein inclusion as observed in coarse-grained simulation. This elastic response provides an explanation for gramicidin ion channel lifetime versus membrane thickness data that requires no fit constants. The physical parameters inherent to this picture may be expressed in terms of familiar material properties associated with lipid monolayers. Inclusion of a finite monolayer spontaneous curvature is essential to obtain fully consistent agreement between theory and the full range of available simulation/experimental data.
doi_str_mv 10.1529/biophysj.105.075838
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1367303</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349506723414</els_id><sourcerecordid>993196521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c550t-c173772bd69bc48d7571e4eaae27eb4fb0ad70cace7840d1170b2ad25a40b12b3</originalsourceid><addsrcrecordid>eNp9kU-PEyEYh4nRuN3VT2BiiAdvU19ggOlBk7W6ukmNHtarhIG3lmYKXZjZpN9eNq1_D55I4Hl_8OMh5BmDOZN88aoPab85lO2cgZyDlp3oHpAZky1vADr1kMwAQDWiXcgzcl7KFoBxCewxOWNKcLVgaka-XdJliiWUEeNIPyWPA12nTG82mHd2oFfD5MbJjqFC1EZPv-Q0YojNdfSTQ0_fYcV3JyBEugr74OnbMNgD5vKEPFrboeDT03pBvl69v1l-bFafP1wvL1eNkxLGxjEttOa9V4vetZ3XUjNs0VrkGvt23YP1Gpx1qLsWPGMaem49l7aFnvFeXJA3x9z91O_Qu1om28Hsc9jZfDDJBvP3SQwb8z3dGSaUFiBqwMtTQE63E5bR7EJxOAw2YpqKUVopydqugi_-AbdpyrGWM5xJDawVskLiCLmcSsm4_vUSBuZenvkpr25Ic5RXp57_WeL3zMlWBV4fAaxfeRcwm-ICxqohZHSj8Sn894IfANqu1A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215701435</pqid></control><display><type>article</type><title>A Consistent Model for Thermal Fluctuations and Protein-Induced Deformations in Lipid Bilayers</title><source>NCBI_PubMed Central(免费)</source><creator>Brannigan, Grace ; Brown, Frank L.H.</creator><creatorcontrib>Brannigan, Grace ; Brown, Frank L.H.</creatorcontrib><description>We present an elastic Hamiltonian for membrane energetics that captures bilayer undulation and peristaltic deformations over all wavelengths, including the short wavelength protrusion regime. The model implies continuous functional forms for thermal undulation and peristaltic amplitudes as a function of wavelength and predicts previously overlooked relationships between these curves. Undulation and peristaltic spectra display excellent agreement with data from both atomistic and coarse-grained models over all simulated length scales. Additionally, the model accurately predicts the bilayer’s response to a cylindrical protein inclusion as observed in coarse-grained simulation. This elastic response provides an explanation for gramicidin ion channel lifetime versus membrane thickness data that requires no fit constants. The physical parameters inherent to this picture may be expressed in terms of familiar material properties associated with lipid monolayers. Inclusion of a finite monolayer spontaneous curvature is essential to obtain fully consistent agreement between theory and the full range of available simulation/experimental data.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1529/biophysj.105.075838</identifier><identifier>PMID: 16326916</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biophysical Theory and Modeling ; Biophysics ; Computer Simulation ; Lipid Bilayers - chemistry ; Lipids ; Membrane Fluidity ; Membrane Proteins - chemistry ; Membranes ; Models, Chemical ; Models, Molecular ; Molecular Conformation ; Phase Transition ; Proteins ; Temperature</subject><ispartof>Biophysical journal, 2006-03, Vol.90 (5), p.1501-1520</ispartof><rights>2006 The Biophysical Society</rights><rights>Copyright Biophysical Society Mar 1, 2006</rights><rights>Copyright © 2006, Biophysical Society 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c550t-c173772bd69bc48d7571e4eaae27eb4fb0ad70cace7840d1170b2ad25a40b12b3</citedby><cites>FETCH-LOGICAL-c550t-c173772bd69bc48d7571e4eaae27eb4fb0ad70cace7840d1170b2ad25a40b12b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1367303/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1367303/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16326916$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Brannigan, Grace</creatorcontrib><creatorcontrib>Brown, Frank L.H.</creatorcontrib><title>A Consistent Model for Thermal Fluctuations and Protein-Induced Deformations in Lipid Bilayers</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>We present an elastic Hamiltonian for membrane energetics that captures bilayer undulation and peristaltic deformations over all wavelengths, including the short wavelength protrusion regime. The model implies continuous functional forms for thermal undulation and peristaltic amplitudes as a function of wavelength and predicts previously overlooked relationships between these curves. Undulation and peristaltic spectra display excellent agreement with data from both atomistic and coarse-grained models over all simulated length scales. Additionally, the model accurately predicts the bilayer’s response to a cylindrical protein inclusion as observed in coarse-grained simulation. This elastic response provides an explanation for gramicidin ion channel lifetime versus membrane thickness data that requires no fit constants. The physical parameters inherent to this picture may be expressed in terms of familiar material properties associated with lipid monolayers. Inclusion of a finite monolayer spontaneous curvature is essential to obtain fully consistent agreement between theory and the full range of available simulation/experimental data.</description><subject>Biophysical Theory and Modeling</subject><subject>Biophysics</subject><subject>Computer Simulation</subject><subject>Lipid Bilayers - chemistry</subject><subject>Lipids</subject><subject>Membrane Fluidity</subject><subject>Membrane Proteins - chemistry</subject><subject>Membranes</subject><subject>Models, Chemical</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Phase Transition</subject><subject>Proteins</subject><subject>Temperature</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kU-PEyEYh4nRuN3VT2BiiAdvU19ggOlBk7W6ukmNHtarhIG3lmYKXZjZpN9eNq1_D55I4Hl_8OMh5BmDOZN88aoPab85lO2cgZyDlp3oHpAZky1vADr1kMwAQDWiXcgzcl7KFoBxCewxOWNKcLVgaka-XdJliiWUEeNIPyWPA12nTG82mHd2oFfD5MbJjqFC1EZPv-Q0YojNdfSTQ0_fYcV3JyBEugr74OnbMNgD5vKEPFrboeDT03pBvl69v1l-bFafP1wvL1eNkxLGxjEttOa9V4vetZ3XUjNs0VrkGvt23YP1Gpx1qLsWPGMaem49l7aFnvFeXJA3x9z91O_Qu1om28Hsc9jZfDDJBvP3SQwb8z3dGSaUFiBqwMtTQE63E5bR7EJxOAw2YpqKUVopydqugi_-AbdpyrGWM5xJDawVskLiCLmcSsm4_vUSBuZenvkpr25Ic5RXp57_WeL3zMlWBV4fAaxfeRcwm-ICxqohZHSj8Sn894IfANqu1A</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Brannigan, Grace</creator><creator>Brown, Frank L.H.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060301</creationdate><title>A Consistent Model for Thermal Fluctuations and Protein-Induced Deformations in Lipid Bilayers</title><author>Brannigan, Grace ; Brown, Frank L.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c550t-c173772bd69bc48d7571e4eaae27eb4fb0ad70cace7840d1170b2ad25a40b12b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Biophysical Theory and Modeling</topic><topic>Biophysics</topic><topic>Computer Simulation</topic><topic>Lipid Bilayers - chemistry</topic><topic>Lipids</topic><topic>Membrane Fluidity</topic><topic>Membrane Proteins - chemistry</topic><topic>Membranes</topic><topic>Models, Chemical</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Phase Transition</topic><topic>Proteins</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brannigan, Grace</creatorcontrib><creatorcontrib>Brown, Frank L.H.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brannigan, Grace</au><au>Brown, Frank L.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Consistent Model for Thermal Fluctuations and Protein-Induced Deformations in Lipid Bilayers</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>90</volume><issue>5</issue><spage>1501</spage><epage>1520</epage><pages>1501-1520</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>We present an elastic Hamiltonian for membrane energetics that captures bilayer undulation and peristaltic deformations over all wavelengths, including the short wavelength protrusion regime. The model implies continuous functional forms for thermal undulation and peristaltic amplitudes as a function of wavelength and predicts previously overlooked relationships between these curves. Undulation and peristaltic spectra display excellent agreement with data from both atomistic and coarse-grained models over all simulated length scales. Additionally, the model accurately predicts the bilayer’s response to a cylindrical protein inclusion as observed in coarse-grained simulation. This elastic response provides an explanation for gramicidin ion channel lifetime versus membrane thickness data that requires no fit constants. The physical parameters inherent to this picture may be expressed in terms of familiar material properties associated with lipid monolayers. Inclusion of a finite monolayer spontaneous curvature is essential to obtain fully consistent agreement between theory and the full range of available simulation/experimental data.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16326916</pmid><doi>10.1529/biophysj.105.075838</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2006-03, Vol.90 (5), p.1501-1520
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1367303
source NCBI_PubMed Central(免费)
subjects Biophysical Theory and Modeling
Biophysics
Computer Simulation
Lipid Bilayers - chemistry
Lipids
Membrane Fluidity
Membrane Proteins - chemistry
Membranes
Models, Chemical
Models, Molecular
Molecular Conformation
Phase Transition
Proteins
Temperature
title A Consistent Model for Thermal Fluctuations and Protein-Induced Deformations in Lipid Bilayers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A07%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Consistent%20Model%20for%20Thermal%20Fluctuations%20and%20Protein-Induced%20Deformations%20in%20Lipid%20Bilayers&rft.jtitle=Biophysical%20journal&rft.au=Brannigan,%20Grace&rft.date=2006-03-01&rft.volume=90&rft.issue=5&rft.spage=1501&rft.epage=1520&rft.pages=1501-1520&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1529/biophysj.105.075838&rft_dat=%3Cproquest_pubme%3E993196521%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c550t-c173772bd69bc48d7571e4eaae27eb4fb0ad70cace7840d1170b2ad25a40b12b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=215701435&rft_id=info:pmid/16326916&rfr_iscdi=true