Loading…

A Test Statistic to Detect Errors in Sib-Pair Relationships

Several authors have proposed algorithms to detect Mendelian errors in human genetic linkage data. Most currently available methods use likelihood-based methods on multiplex family data to identify typing or pedigree errors. These algorithms cannot be applied in many sib-pair collections, because of...

Full description

Saved in:
Bibliographic Details
Published in:American journal of human genetics 1998-01, Vol.62 (1), p.181-188
Main Authors: Ehm, Margaret Gelder, Wagner, Michael
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Several authors have proposed algorithms to detect Mendelian errors in human genetic linkage data. Most currently available methods use likelihood-based methods on multiplex family data to identify typing or pedigree errors. These algorithms cannot be applied in many sib-pair collections, because of lack of parental-genotype information. Nonetheless, misspecifying the relationships between individuals has serious consequences for sib-pair linkage studies: false relationships bias the statistics designed to identify linkage with disease phenotypes. To test the hypothesis that two individuals are sibs, we propose a test statistic based on the summation, over a large number of genetic markers, of the number of alleles shared identical by state by a pair of individuals, for each marker. The test statistic has an approximately normal distribution under the null hypothesis, and extreme negative values correspond to nonsib pairs. Power and significance studies show that the test statistic calculated by use of 50 unlinked markers has 96% power to detect half-sibs and has 100% power to detect unrelated individuals as not full-sib pairs, with a 5% false-positive rate. Furthermore, extreme positive values of the test statistic identify sibs as MZ twins.
ISSN:0002-9297
1537-6605
DOI:10.1086/301668