Loading…
Intestinal microflora in rats with ischemia/reperfusion liver injury
Objectives: To investigate the intestinal microflora status related to ischemia/reperfusion (I/R) liver injury and explore the possible mechanism. Methods: Specific pathogen free grade Sprague-Dawley rats were randomized into three groups: Control group (n=8), sham group (n=6) and I/R group (n=10)....
Saved in:
Published in: | Journal of Zhejiang University. B. Science 2005-01, Vol.6 (1), p.14-21 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Objectives: To investigate the intestinal microflora status related to ischemia/reperfusion (I/R) liver injury and explore the possible mechanism. Methods: Specific pathogen free grade Sprague-Dawley rats were randomized into three groups: Control group (n=8), sham group (n=6) and I/R group (n=10). Rats in the control group did not receive any treatment, rats in the I/R group were subjected to 20 rain of liver ischemia, and rats in the sham group were only subjected to sham operation. Twenty-two hours later, the rats were sacrificed and liver enzymes and malondialdehyde (MDA), superoxide dismutase (SOD), serum endotoxin,intestinal bacterial counts, intestinal mucosal histology, bacterial translocation to mesenteric lymph nodes, liver, spleen, and kidney were studied. Results: Ischemia/reperfusion increased liver enzymes, MDA, decreased SOD, and was associated with plasma endotoxin elevation in the I/R group campared to those in the sham group. Intestinal Bifidobacteria and Lactobacilli decreased and intestinal Enterobacterium and Enterococcus, bacterial translocation to kidney increased in the I/R group compared to the sham group. Intestinal microvilli were lost, disrupted and the interspace between cells became wider in the I/R group.Conclusion: I/R liver injury may lead to disturbance of intestinal microflora and impairment of intestinal mucosal barrier function,which contributes to endotoxemia and bacterial translocation to kidney. |
---|---|
ISSN: | 1673-1581 1862-1783 |
DOI: | 10.1631/jzus.2005.B0014 |