Loading…

Molecular Chaperones as Modulators of Polyglutamine Protein Aggregation and Toxicity

The formation of insoluble protein aggregates in neurons is a hallmark of neurodegenerative diseases caused by proteins with expanded polyglutamine (polyQ) repeats. However, the mechanistic relationship between polyQ aggregation and its toxic effects on neurons remains unclear. Two main hypotheses h...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2002-12, Vol.99 (suppl_4), p.16412-16418
Main Authors: Sakahira, Hideki, Breuer, Peter, Hayer-Hartl, Manajit K., Hartl, F. Ulrich
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The formation of insoluble protein aggregates in neurons is a hallmark of neurodegenerative diseases caused by proteins with expanded polyglutamine (polyQ) repeats. However, the mechanistic relationship between polyQ aggregation and its toxic effects on neurons remains unclear. Two main hypotheses have been put forward for how polyQ expansions may cause cellular dysfunction. In one model neurotoxicity results from the ability of polyQ-expanded proteins to recruit other important cellular proteins with polyQ stretches into the aggregates. In the other model, aggregating polyQ proteins partially inhibit the ubiquitin-proteasome system for protein degradation. These two mechanisms are not exclusive but may act in combination. In general, protein misfolding and aggregation are prevented by the machinery of molecular chaperones. Some chaperones such as the members of the Hsp70 family also modulate polyQ aggregation and suppress its toxicity. These recent findings suggest that an imbalance between the neuronal chaperone capacity and the production of potentially dangerous polyQ proteins may trigger the onset of polyQ disease.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.182426899