Loading…

Site‐directed mutagenesis analysis of the structural interaction of the single‐strand‐break repair protein, X‐ray cross‐complementing group 1, with DNA polymerase β

Human X‐ray cross‐complementing group 1 (XRCC1) is a single‐strand DNA break repair protein which forms a base excision repair (BER) complex with DNA polymerase β (β‐Pol). Here we report a site‐ directed mutational analysis in which 16 mutated versions of the XRCC1 N‐terminal domain (XRCC1‐NTD) were...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 2003-01, Vol.31 (2), p.580-588
Main Authors: Marintchev, Assen, Gryk, Michael R., Mullen, Gregory P.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c442t-d5a2cabdc018fc58b7610fedda6a1beef1ed4a0b02d54e9f7cc2d914c70c914f3
cites
container_end_page 588
container_issue 2
container_start_page 580
container_title Nucleic acids research
container_volume 31
creator Marintchev, Assen
Gryk, Michael R.
Mullen, Gregory P.
description Human X‐ray cross‐complementing group 1 (XRCC1) is a single‐strand DNA break repair protein which forms a base excision repair (BER) complex with DNA polymerase β (β‐Pol). Here we report a site‐ directed mutational analysis in which 16 mutated versions of the XRCC1 N‐terminal domain (XRCC1‐NTD) were constructed on the basis of previous NMR results that had implicated the proximity of various surface residues to β‐Pol. Mutant proteins defective in XRCC1‐NTD interaction with β‐Pol and with a β‐Pol–gapped DNA complex were determined by gel filtration chromatography and a gel mobility shift assay. The interaction surface determined from the mutated residues was found to encompass β‐strand D and E of the five‐stranded β‐sheet (βABGDE) and the protruding α2 helix of the XRCC1‐NTD. Mutations that included F67A (βD), E69K (βD), V86R (βE) on the five‐stranded β‐sheet and deletion of the α2 helix, but not mutations within α2, abolished binding of the XRCC1‐NTD to β‐Pol. A Y136A mutant abolished β‐Pol binding, and a R109S mutant reduced β‐Pol binding. E98K, E98A, N104A, Y136A, R109S, K129E, F142A, R31A/K32A/R34A and δ‐helix‐2 mutants displayed temperature dependent solubility. These findings confirm the importance of the α2 helix and the βD and βE strands of XRCC1‐NTD to the energetics of β‐Pol binding. Establishing the direct contacts in the β‐Pol XRCC1 complex is a critical step in understanding how XRCC1 fulfills its numerous functions in DNA BER.
doi_str_mv 10.1093/nar/gkg159
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_140523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>18661379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c442t-d5a2cabdc018fc58b7610fedda6a1beef1ed4a0b02d54e9f7cc2d914c70c914f3</originalsourceid><addsrcrecordid>eNpVkc1u1DAUhS0EotPChgdAXrFADbUTO5ksWJRSGKSqVPypYmM59k3GTGIH2wFmxyPwJkg8CA_Bk-BhRgOs7pHOd3_sg9A9Sh5RUhcnVvqTbtVRXt9AM1qUecbqMr-JZqQgPKOEzQ_QYQgfCKGMcnYbHdCc51VV8hn6_tpE-PX1mzYeVASNhynKDiwEE7C0sl9vhGtxXAIO0U8qTl722NgIXqponN27xnb9ZlbCpNVJNB7kCnsYpfF49C6Cscf4OjlerrHyLoSklRvGHgawMQ3AnXfTiOkx_mziEj-9PMWj69dDWhYA__xxB91qZR_g7q4eobfPzt-cLbKLl89fnJ1eZIqxPGaay1zJRitC563i86YqKWlBa1lK2gC0FDSTpCG55gzqtlIq1zVlqiIqlbY4Qo-3c8epGUCrdF16thi9GaRfCyeN-N-xZik690lQRnhepP4Hu37vPk4QohhMUND30oKbgqDzsqRFVSfw4Rb88x0e2v0OSsQmXpHiFdt4E3z_36v-ors8E5BtARMifNn70q9EWRUVF4vr9-JqwYon7y5fiaviN33vvf0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>18661379</pqid></control><display><type>article</type><title>Site‐directed mutagenesis analysis of the structural interaction of the single‐strand‐break repair protein, X‐ray cross‐complementing group 1, with DNA polymerase β</title><source>Oxford Open</source><source>PubMed Central</source><creator>Marintchev, Assen ; Gryk, Michael R. ; Mullen, Gregory P.</creator><creatorcontrib>Marintchev, Assen ; Gryk, Michael R. ; Mullen, Gregory P.</creatorcontrib><description>Human X‐ray cross‐complementing group 1 (XRCC1) is a single‐strand DNA break repair protein which forms a base excision repair (BER) complex with DNA polymerase β (β‐Pol). Here we report a site‐ directed mutational analysis in which 16 mutated versions of the XRCC1 N‐terminal domain (XRCC1‐NTD) were constructed on the basis of previous NMR results that had implicated the proximity of various surface residues to β‐Pol. Mutant proteins defective in XRCC1‐NTD interaction with β‐Pol and with a β‐Pol–gapped DNA complex were determined by gel filtration chromatography and a gel mobility shift assay. The interaction surface determined from the mutated residues was found to encompass β‐strand D and E of the five‐stranded β‐sheet (βABGDE) and the protruding α2 helix of the XRCC1‐NTD. Mutations that included F67A (βD), E69K (βD), V86R (βE) on the five‐stranded β‐sheet and deletion of the α2 helix, but not mutations within α2, abolished binding of the XRCC1‐NTD to β‐Pol. A Y136A mutant abolished β‐Pol binding, and a R109S mutant reduced β‐Pol binding. E98K, E98A, N104A, Y136A, R109S, K129E, F142A, R31A/K32A/R34A and δ‐helix‐2 mutants displayed temperature dependent solubility. These findings confirm the importance of the α2 helix and the βD and βE strands of XRCC1‐NTD to the energetics of β‐Pol binding. Establishing the direct contacts in the β‐Pol XRCC1 complex is a critical step in understanding how XRCC1 fulfills its numerous functions in DNA BER.</description><identifier>ISSN: 0305-1048</identifier><identifier>ISSN: 1362-4962</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkg159</identifier><identifier>PMID: 12527765</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acid Substitution ; Binding Sites - genetics ; Chromatography, High Pressure Liquid ; DNA Polymerase beta - metabolism ; DNA-Binding Proteins - chemistry ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Electrophoresis, Polyacrylamide Gel ; Magnetic Resonance Spectroscopy ; Mutagenesis, Site-Directed ; Mutation ; Protein Binding ; Protein Conformation ; Protein Folding ; Solubility ; Temperature ; X-ray Repair Cross Complementing Protein 1</subject><ispartof>Nucleic acids research, 2003-01, Vol.31 (2), p.580-588</ispartof><rights>Copyright © 2003 Oxford University Press 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c442t-d5a2cabdc018fc58b7610fedda6a1beef1ed4a0b02d54e9f7cc2d914c70c914f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC140523/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC140523/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/12527765$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marintchev, Assen</creatorcontrib><creatorcontrib>Gryk, Michael R.</creatorcontrib><creatorcontrib>Mullen, Gregory P.</creatorcontrib><title>Site‐directed mutagenesis analysis of the structural interaction of the single‐strand‐break repair protein, X‐ray cross‐complementing group 1, with DNA polymerase β</title><title>Nucleic acids research</title><addtitle>Nucl. Acids Res</addtitle><description>Human X‐ray cross‐complementing group 1 (XRCC1) is a single‐strand DNA break repair protein which forms a base excision repair (BER) complex with DNA polymerase β (β‐Pol). Here we report a site‐ directed mutational analysis in which 16 mutated versions of the XRCC1 N‐terminal domain (XRCC1‐NTD) were constructed on the basis of previous NMR results that had implicated the proximity of various surface residues to β‐Pol. Mutant proteins defective in XRCC1‐NTD interaction with β‐Pol and with a β‐Pol–gapped DNA complex were determined by gel filtration chromatography and a gel mobility shift assay. The interaction surface determined from the mutated residues was found to encompass β‐strand D and E of the five‐stranded β‐sheet (βABGDE) and the protruding α2 helix of the XRCC1‐NTD. Mutations that included F67A (βD), E69K (βD), V86R (βE) on the five‐stranded β‐sheet and deletion of the α2 helix, but not mutations within α2, abolished binding of the XRCC1‐NTD to β‐Pol. A Y136A mutant abolished β‐Pol binding, and a R109S mutant reduced β‐Pol binding. E98K, E98A, N104A, Y136A, R109S, K129E, F142A, R31A/K32A/R34A and δ‐helix‐2 mutants displayed temperature dependent solubility. These findings confirm the importance of the α2 helix and the βD and βE strands of XRCC1‐NTD to the energetics of β‐Pol binding. Establishing the direct contacts in the β‐Pol XRCC1 complex is a critical step in understanding how XRCC1 fulfills its numerous functions in DNA BER.</description><subject>Amino Acid Substitution</subject><subject>Binding Sites - genetics</subject><subject>Chromatography, High Pressure Liquid</subject><subject>DNA Polymerase beta - metabolism</subject><subject>DNA-Binding Proteins - chemistry</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Mutagenesis, Site-Directed</subject><subject>Mutation</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein Folding</subject><subject>Solubility</subject><subject>Temperature</subject><subject>X-ray Repair Cross Complementing Protein 1</subject><issn>0305-1048</issn><issn>1362-4962</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNpVkc1u1DAUhS0EotPChgdAXrFADbUTO5ksWJRSGKSqVPypYmM59k3GTGIH2wFmxyPwJkg8CA_Bk-BhRgOs7pHOd3_sg9A9Sh5RUhcnVvqTbtVRXt9AM1qUecbqMr-JZqQgPKOEzQ_QYQgfCKGMcnYbHdCc51VV8hn6_tpE-PX1mzYeVASNhynKDiwEE7C0sl9vhGtxXAIO0U8qTl722NgIXqponN27xnb9ZlbCpNVJNB7kCnsYpfF49C6Cscf4OjlerrHyLoSklRvGHgawMQ3AnXfTiOkx_mziEj-9PMWj69dDWhYA__xxB91qZR_g7q4eobfPzt-cLbKLl89fnJ1eZIqxPGaay1zJRitC563i86YqKWlBa1lK2gC0FDSTpCG55gzqtlIq1zVlqiIqlbY4Qo-3c8epGUCrdF16thi9GaRfCyeN-N-xZik690lQRnhepP4Hu37vPk4QohhMUND30oKbgqDzsqRFVSfw4Rb88x0e2v0OSsQmXpHiFdt4E3z_36v-ors8E5BtARMifNn70q9EWRUVF4vr9-JqwYon7y5fiaviN33vvf0</recordid><startdate>20030115</startdate><enddate>20030115</enddate><creator>Marintchev, Assen</creator><creator>Gryk, Michael R.</creator><creator>Mullen, Gregory P.</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>5PM</scope></search><sort><creationdate>20030115</creationdate><title>Site‐directed mutagenesis analysis of the structural interaction of the single‐strand‐break repair protein, X‐ray cross‐complementing group 1, with DNA polymerase β</title><author>Marintchev, Assen ; Gryk, Michael R. ; Mullen, Gregory P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c442t-d5a2cabdc018fc58b7610fedda6a1beef1ed4a0b02d54e9f7cc2d914c70c914f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Amino Acid Substitution</topic><topic>Binding Sites - genetics</topic><topic>Chromatography, High Pressure Liquid</topic><topic>DNA Polymerase beta - metabolism</topic><topic>DNA-Binding Proteins - chemistry</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Mutagenesis, Site-Directed</topic><topic>Mutation</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein Folding</topic><topic>Solubility</topic><topic>Temperature</topic><topic>X-ray Repair Cross Complementing Protein 1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marintchev, Assen</creatorcontrib><creatorcontrib>Gryk, Michael R.</creatorcontrib><creatorcontrib>Mullen, Gregory P.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marintchev, Assen</au><au>Gryk, Michael R.</au><au>Mullen, Gregory P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site‐directed mutagenesis analysis of the structural interaction of the single‐strand‐break repair protein, X‐ray cross‐complementing group 1, with DNA polymerase β</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucl. Acids Res</addtitle><date>2003-01-15</date><risdate>2003</risdate><volume>31</volume><issue>2</issue><spage>580</spage><epage>588</epage><pages>580-588</pages><issn>0305-1048</issn><issn>1362-4962</issn><eissn>1362-4962</eissn><abstract>Human X‐ray cross‐complementing group 1 (XRCC1) is a single‐strand DNA break repair protein which forms a base excision repair (BER) complex with DNA polymerase β (β‐Pol). Here we report a site‐ directed mutational analysis in which 16 mutated versions of the XRCC1 N‐terminal domain (XRCC1‐NTD) were constructed on the basis of previous NMR results that had implicated the proximity of various surface residues to β‐Pol. Mutant proteins defective in XRCC1‐NTD interaction with β‐Pol and with a β‐Pol–gapped DNA complex were determined by gel filtration chromatography and a gel mobility shift assay. The interaction surface determined from the mutated residues was found to encompass β‐strand D and E of the five‐stranded β‐sheet (βABGDE) and the protruding α2 helix of the XRCC1‐NTD. Mutations that included F67A (βD), E69K (βD), V86R (βE) on the five‐stranded β‐sheet and deletion of the α2 helix, but not mutations within α2, abolished binding of the XRCC1‐NTD to β‐Pol. A Y136A mutant abolished β‐Pol binding, and a R109S mutant reduced β‐Pol binding. E98K, E98A, N104A, Y136A, R109S, K129E, F142A, R31A/K32A/R34A and δ‐helix‐2 mutants displayed temperature dependent solubility. These findings confirm the importance of the α2 helix and the βD and βE strands of XRCC1‐NTD to the energetics of β‐Pol binding. Establishing the direct contacts in the β‐Pol XRCC1 complex is a critical step in understanding how XRCC1 fulfills its numerous functions in DNA BER.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>12527765</pmid><doi>10.1093/nar/gkg159</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2003-01, Vol.31 (2), p.580-588
issn 0305-1048
1362-4962
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_140523
source Oxford Open; PubMed Central
subjects Amino Acid Substitution
Binding Sites - genetics
Chromatography, High Pressure Liquid
DNA Polymerase beta - metabolism
DNA-Binding Proteins - chemistry
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Electrophoresis, Polyacrylamide Gel
Magnetic Resonance Spectroscopy
Mutagenesis, Site-Directed
Mutation
Protein Binding
Protein Conformation
Protein Folding
Solubility
Temperature
X-ray Repair Cross Complementing Protein 1
title Site‐directed mutagenesis analysis of the structural interaction of the single‐strand‐break repair protein, X‐ray cross‐complementing group 1, with DNA polymerase β
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site%E2%80%90directed%20mutagenesis%20analysis%20of%20the%20structural%20interaction%20of%20the%20single%E2%80%90strand%E2%80%90break%20repair%20protein,%20X%E2%80%90ray%20cross%E2%80%90complementing%20group%201,%20with%20DNA%20polymerase%20%CE%B2&rft.jtitle=Nucleic%20acids%20research&rft.au=Marintchev,%20Assen&rft.date=2003-01-15&rft.volume=31&rft.issue=2&rft.spage=580&rft.epage=588&rft.pages=580-588&rft.issn=0305-1048&rft.eissn=1362-4962&rft_id=info:doi/10.1093/nar/gkg159&rft_dat=%3Cproquest_pubme%3E18661379%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c442t-d5a2cabdc018fc58b7610fedda6a1beef1ed4a0b02d54e9f7cc2d914c70c914f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=18661379&rft_id=info:pmid/12527765&rfr_iscdi=true