Loading…
Sequential N‐ to C‐terminal SNARE complex assembly drives priming and fusion of secretory vesicles
During exocytosis a four‐helical coiled coil is formed between the three SNARE proteins syntaxin, synaptobrevin and SNAP‐25, bridging vesicle and plasma membrane. We have investigated the assembly pathway of this complex by interfering with the stability of the hydrophobic interaction layers holding...
Saved in:
Published in: | The EMBO journal 2006-03, Vol.25 (5), p.955-966 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 966 |
container_issue | 5 |
container_start_page | 955 |
container_title | The EMBO journal |
container_volume | 25 |
creator | Sørensen, Jakob B Wiederhold, Katrin Müller, Emil M Milosevic, Ira Nagy, Gábor de Groot, Bert L Grubmüller, Helmut Fasshauer, Dirk |
description | During exocytosis a four‐helical coiled coil is formed between the three SNARE proteins syntaxin, synaptobrevin and SNAP‐25, bridging vesicle and plasma membrane. We have investigated the assembly pathway of this complex by interfering with the stability of the hydrophobic interaction layers holding the complex together. Mutations in the C‐terminal end affected fusion triggering
in vivo
and led to two‐step unfolding of the SNARE complex
in vitro
, indicating that the C‐terminal end can assemble/disassemble independently. Free energy perturbation calculations showed that assembly of the C‐terminal end could liberate substantial amounts of energy that may drive fusion. In contrast, similar N‐terminal mutations were without effects on exocytosis, and mutations in the middle of the complex selectively interfered with upstream maturation steps (vesicle priming), but not with fusion triggering. We conclude that the SNARE complex forms in the N‐ to C‐terminal direction, and that a partly assembled intermediate corresponds to the primed vesicle state. |
doi_str_mv | 10.1038/sj.emboj.7601003 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1409717</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67727609</sourcerecordid><originalsourceid>FETCH-LOGICAL-p3833-5f366cf9bf3a5279240441dfce7ff4bebb4a2a43055e26db93dda8f4451d2bfd3</originalsourceid><addsrcrecordid>eNp1kc1u1DAUhS0EotPCnhWyWLDL4L_Y8QapjKb8qBSJwtpyYntw5MRTOynMjkfgGXkSXGaAgsTqWr7fuT4-F4BHGC0xos2z3C_t0MZ-KTjCCNE7YIEZRxVBor4LFohwXDHcyCNwnHOPEKobge-DI8yZbBjGC-Au7dVsx8nrAC--f_0GpwhXpU42DX4sl5cXp-_XsIvDNtgvUOdcHgw7aJK_thluky_YBurRQDdnH0cYHcy2S3aKaQcL47tg8wNwz-mQ7cNDPQEfz9YfVq-q83cvX69Oz6stbSitakc575xsHdU1EZIwxBg2rrPCOdbatmWaaEZRXVvCTSupMbpxjNXYkNYZegKe7-du53awpis_SzqoG5s67VTUXv3dGf0ntYnXCjMkBRZlwNPDgBRLMHlSg8-dDUGPNs5ZcSFICVsW8Mk_YB_nVBLLCsuaNEhwXqDHt-389vEr_wLIPfDZB7v700fqZr8q9-rnftVhv2r99sWbw7lo8V6bi2zc2HTLwX_09Ack168-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195280766</pqid></control><display><type>article</type><title>Sequential N‐ to C‐terminal SNARE complex assembly drives priming and fusion of secretory vesicles</title><source>PubMed Central</source><creator>Sørensen, Jakob B ; Wiederhold, Katrin ; Müller, Emil M ; Milosevic, Ira ; Nagy, Gábor ; de Groot, Bert L ; Grubmüller, Helmut ; Fasshauer, Dirk</creator><creatorcontrib>Sørensen, Jakob B ; Wiederhold, Katrin ; Müller, Emil M ; Milosevic, Ira ; Nagy, Gábor ; de Groot, Bert L ; Grubmüller, Helmut ; Fasshauer, Dirk</creatorcontrib><description>During exocytosis a four‐helical coiled coil is formed between the three SNARE proteins syntaxin, synaptobrevin and SNAP‐25, bridging vesicle and plasma membrane. We have investigated the assembly pathway of this complex by interfering with the stability of the hydrophobic interaction layers holding the complex together. Mutations in the C‐terminal end affected fusion triggering
in vivo
and led to two‐step unfolding of the SNARE complex
in vitro
, indicating that the C‐terminal end can assemble/disassemble independently. Free energy perturbation calculations showed that assembly of the C‐terminal end could liberate substantial amounts of energy that may drive fusion. In contrast, similar N‐terminal mutations were without effects on exocytosis, and mutations in the middle of the complex selectively interfered with upstream maturation steps (vesicle priming), but not with fusion triggering. We conclude that the SNARE complex forms in the N‐ to C‐terminal direction, and that a partly assembled intermediate corresponds to the primed vesicle state.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/sj.emboj.7601003</identifier><identifier>PMID: 16498411</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Amino Acid Sequence ; Amino Acid Substitution ; Animals ; Binding Sites ; capacitance measurements ; Cell Membrane - metabolism ; chromaffin cells ; Chromaffin Cells - cytology ; Chromaffin Cells - metabolism ; Circular Dichroism ; Electrophysiology ; EMBO20 ; Exocytosis ; Fusion ; Membrane Fusion ; Mice ; Mice, Knockout ; Molecular Sequence Data ; Mutation ; Proteins ; Qa-SNARE Proteins - metabolism ; R-SNARE Proteins - metabolism ; Secretory Vesicles - chemistry ; Secretory Vesicles - metabolism ; Sequence Homology, Amino Acid ; SNAP‐25 ; SNARE proteins ; Synaptosomal-Associated Protein 25 - metabolism ; Upstream</subject><ispartof>The EMBO journal, 2006-03, Vol.25 (5), p.955-966</ispartof><rights>European Molecular Biology Organization 2006</rights><rights>Copyright © 2006 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Mar 8, 2006</rights><rights>Copyright © 2006, European Molecular Biology Organization 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1409717/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1409717/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,725,778,782,883,27911,27912,53778,53780</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16498411$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sørensen, Jakob B</creatorcontrib><creatorcontrib>Wiederhold, Katrin</creatorcontrib><creatorcontrib>Müller, Emil M</creatorcontrib><creatorcontrib>Milosevic, Ira</creatorcontrib><creatorcontrib>Nagy, Gábor</creatorcontrib><creatorcontrib>de Groot, Bert L</creatorcontrib><creatorcontrib>Grubmüller, Helmut</creatorcontrib><creatorcontrib>Fasshauer, Dirk</creatorcontrib><title>Sequential N‐ to C‐terminal SNARE complex assembly drives priming and fusion of secretory vesicles</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>During exocytosis a four‐helical coiled coil is formed between the three SNARE proteins syntaxin, synaptobrevin and SNAP‐25, bridging vesicle and plasma membrane. We have investigated the assembly pathway of this complex by interfering with the stability of the hydrophobic interaction layers holding the complex together. Mutations in the C‐terminal end affected fusion triggering
in vivo
and led to two‐step unfolding of the SNARE complex
in vitro
, indicating that the C‐terminal end can assemble/disassemble independently. Free energy perturbation calculations showed that assembly of the C‐terminal end could liberate substantial amounts of energy that may drive fusion. In contrast, similar N‐terminal mutations were without effects on exocytosis, and mutations in the middle of the complex selectively interfered with upstream maturation steps (vesicle priming), but not with fusion triggering. We conclude that the SNARE complex forms in the N‐ to C‐terminal direction, and that a partly assembled intermediate corresponds to the primed vesicle state.</description><subject>Amino Acid Sequence</subject><subject>Amino Acid Substitution</subject><subject>Animals</subject><subject>Binding Sites</subject><subject>capacitance measurements</subject><subject>Cell Membrane - metabolism</subject><subject>chromaffin cells</subject><subject>Chromaffin Cells - cytology</subject><subject>Chromaffin Cells - metabolism</subject><subject>Circular Dichroism</subject><subject>Electrophysiology</subject><subject>EMBO20</subject><subject>Exocytosis</subject><subject>Fusion</subject><subject>Membrane Fusion</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Proteins</subject><subject>Qa-SNARE Proteins - metabolism</subject><subject>R-SNARE Proteins - metabolism</subject><subject>Secretory Vesicles - chemistry</subject><subject>Secretory Vesicles - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>SNAP‐25</subject><subject>SNARE proteins</subject><subject>Synaptosomal-Associated Protein 25 - metabolism</subject><subject>Upstream</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp1kc1u1DAUhS0EotPCnhWyWLDL4L_Y8QapjKb8qBSJwtpyYntw5MRTOynMjkfgGXkSXGaAgsTqWr7fuT4-F4BHGC0xos2z3C_t0MZ-KTjCCNE7YIEZRxVBor4LFohwXDHcyCNwnHOPEKobge-DI8yZbBjGC-Au7dVsx8nrAC--f_0GpwhXpU42DX4sl5cXp-_XsIvDNtgvUOdcHgw7aJK_thluky_YBurRQDdnH0cYHcy2S3aKaQcL47tg8wNwz-mQ7cNDPQEfz9YfVq-q83cvX69Oz6stbSitakc575xsHdU1EZIwxBg2rrPCOdbatmWaaEZRXVvCTSupMbpxjNXYkNYZegKe7-du53awpis_SzqoG5s67VTUXv3dGf0ntYnXCjMkBRZlwNPDgBRLMHlSg8-dDUGPNs5ZcSFICVsW8Mk_YB_nVBLLCsuaNEhwXqDHt-389vEr_wLIPfDZB7v700fqZr8q9-rnftVhv2r99sWbw7lo8V6bi2zc2HTLwX_09Ack168-</recordid><startdate>20060308</startdate><enddate>20060308</enddate><creator>Sørensen, Jakob B</creator><creator>Wiederhold, Katrin</creator><creator>Müller, Emil M</creator><creator>Milosevic, Ira</creator><creator>Nagy, Gábor</creator><creator>de Groot, Bert L</creator><creator>Grubmüller, Helmut</creator><creator>Fasshauer, Dirk</creator><general>Nature Publishing Group UK</general><general>John Wiley & Sons, Ltd</general><general>Blackwell Publishing Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060308</creationdate><title>Sequential N‐ to C‐terminal SNARE complex assembly drives priming and fusion of secretory vesicles</title><author>Sørensen, Jakob B ; Wiederhold, Katrin ; Müller, Emil M ; Milosevic, Ira ; Nagy, Gábor ; de Groot, Bert L ; Grubmüller, Helmut ; Fasshauer, Dirk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p3833-5f366cf9bf3a5279240441dfce7ff4bebb4a2a43055e26db93dda8f4451d2bfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Amino Acid Sequence</topic><topic>Amino Acid Substitution</topic><topic>Animals</topic><topic>Binding Sites</topic><topic>capacitance measurements</topic><topic>Cell Membrane - metabolism</topic><topic>chromaffin cells</topic><topic>Chromaffin Cells - cytology</topic><topic>Chromaffin Cells - metabolism</topic><topic>Circular Dichroism</topic><topic>Electrophysiology</topic><topic>EMBO20</topic><topic>Exocytosis</topic><topic>Fusion</topic><topic>Membrane Fusion</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Proteins</topic><topic>Qa-SNARE Proteins - metabolism</topic><topic>R-SNARE Proteins - metabolism</topic><topic>Secretory Vesicles - chemistry</topic><topic>Secretory Vesicles - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>SNAP‐25</topic><topic>SNARE proteins</topic><topic>Synaptosomal-Associated Protein 25 - metabolism</topic><topic>Upstream</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sørensen, Jakob B</creatorcontrib><creatorcontrib>Wiederhold, Katrin</creatorcontrib><creatorcontrib>Müller, Emil M</creatorcontrib><creatorcontrib>Milosevic, Ira</creatorcontrib><creatorcontrib>Nagy, Gábor</creatorcontrib><creatorcontrib>de Groot, Bert L</creatorcontrib><creatorcontrib>Grubmüller, Helmut</creatorcontrib><creatorcontrib>Fasshauer, Dirk</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sørensen, Jakob B</au><au>Wiederhold, Katrin</au><au>Müller, Emil M</au><au>Milosevic, Ira</au><au>Nagy, Gábor</au><au>de Groot, Bert L</au><au>Grubmüller, Helmut</au><au>Fasshauer, Dirk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sequential N‐ to C‐terminal SNARE complex assembly drives priming and fusion of secretory vesicles</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2006-03-08</date><risdate>2006</risdate><volume>25</volume><issue>5</issue><spage>955</spage><epage>966</epage><pages>955-966</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>During exocytosis a four‐helical coiled coil is formed between the three SNARE proteins syntaxin, synaptobrevin and SNAP‐25, bridging vesicle and plasma membrane. We have investigated the assembly pathway of this complex by interfering with the stability of the hydrophobic interaction layers holding the complex together. Mutations in the C‐terminal end affected fusion triggering
in vivo
and led to two‐step unfolding of the SNARE complex
in vitro
, indicating that the C‐terminal end can assemble/disassemble independently. Free energy perturbation calculations showed that assembly of the C‐terminal end could liberate substantial amounts of energy that may drive fusion. In contrast, similar N‐terminal mutations were without effects on exocytosis, and mutations in the middle of the complex selectively interfered with upstream maturation steps (vesicle priming), but not with fusion triggering. We conclude that the SNARE complex forms in the N‐ to C‐terminal direction, and that a partly assembled intermediate corresponds to the primed vesicle state.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>16498411</pmid><doi>10.1038/sj.emboj.7601003</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2006-03, Vol.25 (5), p.955-966 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1409717 |
source | PubMed Central |
subjects | Amino Acid Sequence Amino Acid Substitution Animals Binding Sites capacitance measurements Cell Membrane - metabolism chromaffin cells Chromaffin Cells - cytology Chromaffin Cells - metabolism Circular Dichroism Electrophysiology EMBO20 Exocytosis Fusion Membrane Fusion Mice Mice, Knockout Molecular Sequence Data Mutation Proteins Qa-SNARE Proteins - metabolism R-SNARE Proteins - metabolism Secretory Vesicles - chemistry Secretory Vesicles - metabolism Sequence Homology, Amino Acid SNAP‐25 SNARE proteins Synaptosomal-Associated Protein 25 - metabolism Upstream |
title | Sequential N‐ to C‐terminal SNARE complex assembly drives priming and fusion of secretory vesicles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T09%3A45%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sequential%20N%E2%80%90%20to%20C%E2%80%90terminal%20SNARE%20complex%20assembly%20drives%20priming%20and%20fusion%20of%20secretory%20vesicles&rft.jtitle=The%20EMBO%20journal&rft.au=S%C3%B8rensen,%20Jakob%20B&rft.date=2006-03-08&rft.volume=25&rft.issue=5&rft.spage=955&rft.epage=966&rft.pages=955-966&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/sj.emboj.7601003&rft_dat=%3Cproquest_pubme%3E67727609%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p3833-5f366cf9bf3a5279240441dfce7ff4bebb4a2a43055e26db93dda8f4451d2bfd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195280766&rft_id=info:pmid/16498411&rfr_iscdi=true |