Loading…
Top-Down Reorganization of Activity in the Visual Pathway after Learning a Shape Identification Task
Learning in shape identification led to global changes in activation across the entire visual pathway, as revealed with whole-brain fMRI. Following extensive training in a shape identification task, brain activity associated with trained shapes relative to the untrained shapes showed: (1) an increas...
Saved in:
Published in: | Neuron (Cambridge, Mass.) Mass.), 2005-06, Vol.46 (5), p.823-835 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Learning in shape identification led to global changes in activation across the entire visual pathway, as revealed with whole-brain fMRI. Following extensive training in a shape identification task, brain activity associated with trained shapes relative to the untrained shapes showed: (1) an increased level of activity in retinotopic cortex (RC), (2) a decrease in activation of the lateral occipital cortex (LO), and (3) a decrease in the dorsal attentional network. In addition, RC activations became more correlated (and LO activation, less correlated) with performance. When comparing target-present and target-absent trials within the trained condition, we observed a similar decrease in the dorsal attentional network but not in the visual cortices. These findings indicate a large-scale reorganization of activity in the visual pathway as a result of learning, with the RC becoming more involved (and the LO, less involved) and that these changes are triggered in a top-down manner depending on the perceptual task performed. |
---|---|
ISSN: | 0896-6273 1097-4199 |
DOI: | 10.1016/j.neuron.2005.05.014 |