Loading…
Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion
A conserved regulatory mechanism protects plants against the potentially damaging effects of excessive light. Nearly all photosynthetic eukaryotes are able to dissipate excess absorbed light energy in a process that involves xanthophyll pigments. To dissect the role of xanthophylls in photoprotectiv...
Saved in:
Published in: | The Plant cell 1998-07, Vol.10 (7), p.1121-1134 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4461-fb0d2f6d4c343e35a1efdef83e2c51e27a19801ec14fffba8f7f7d045e04d9393 |
---|---|
cites | |
container_end_page | 1134 |
container_issue | 7 |
container_start_page | 1121 |
container_title | The Plant cell |
container_volume | 10 |
creator | Niyogi, K.K. (University of California, Berkeley.) Grossman, A.R Bjorkman, O |
description | A conserved regulatory mechanism protects plants against the potentially damaging effects of excessive light. Nearly all photosynthetic eukaryotes are able to dissipate excess absorbed light energy in a process that involves xanthophyll pigments. To dissect the role of xanthophylls in photoprotective energy dissipation in vivo, we isolated Arabidopsis xanthophyll cycle mutants by screening for altered nonphotochemical quenching of chlorophyll fluorescence. The npq1 mutants are unable to convert violaxanthin to zeaxanthin in excessive light, whereas the npq2 mutants accumulate zeaxanthin constitutively. The npq2 mutants are new alleles of aba1, the zeaxanthin epoxidase gene. The high levels of zeaxanthin in npq2 affected the kinetics of induction and relaxation but not the extent of nonphotochemical quenching. Genetic mapping, DNA sequencing, and complementation of npq1 demonstrated that this mutation affects the structural gene encoding violaxanthin deepoxidase. The npq1 mutant exhibited greatly reduced nonphotochemical quenching, demonstrating that violaxanthin deepoxidation is required for the bulk of rapidly reversible nonphotochemical quenching in Arabidopsis. Altered regulation of photosynthetic energy conversion in npq1 was associated with increased sensitivity to photoinhibition. These results, in conjunction with the analysis of npq mutants of Chlamydomonas, suggest that the role of the xanthophyll cycle in nonphotochemical quenching has been conserved, although different photosynthetic eukaryotes rely on the xanthophyll cycle to different extents for the dissipation of excess absorbed light energy |
doi_str_mv | 10.1105/tpc.10.7.1121 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_144052</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3870716</jstor_id><sourcerecordid>3870716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4461-fb0d2f6d4c343e35a1efdef83e2c51e27a19801ec14fffba8f7f7d045e04d9393</originalsourceid><addsrcrecordid>eNpVUc9vFCEUJkZT2-rRowkHr1N5wAzDwUPT-KNJEw_axBthmccOzewwAbZx_ntZd1PriY98P-C9j5B3wK4AWPuxLO6qYlVvHF6Qc2gFb7juf72smEnWyK6F1-Qi5wfGGCjQZ-RMd10Pgp-T9TrZTRjikkOmu32xc8l0QB9mpJY6nEuyE01xQupjomVE-rtqxriM6zRRt7rKhPkvkXC7n2wJcabR02WMJea1arEER3HGtF2pi_Mjplw1b8grb6eMb0_nJbn_8vnnzbfm7vvX25vru8ZJ2UHjN2zgvhukE1KgaC2gr__rBXLXAnJlQfcM0IH03m9s75VXA5MtMjloocUl-XTMXfabHQ6nkcySws6m1UQbzP_MHEazjY8GpGQtr_7m6Hcp5pzQP1mBmUMDpjZwwMocGqj698_fe1KfVl75D0f-IZeYnodxwZQRvWIKun8x3kZjtylkc_8DtNa1Q9G34g_43Jtx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion</title><source>JSTOR Archival Journals and Primary Sources Collection【Remote access available】</source><source>Oxford Journals Online</source><creator>Niyogi, K.K. (University of California, Berkeley.) ; Grossman, A.R ; Bjorkman, O</creator><creatorcontrib>Niyogi, K.K. (University of California, Berkeley.) ; Grossman, A.R ; Bjorkman, O</creatorcontrib><description>A conserved regulatory mechanism protects plants against the potentially damaging effects of excessive light. Nearly all photosynthetic eukaryotes are able to dissipate excess absorbed light energy in a process that involves xanthophyll pigments. To dissect the role of xanthophylls in photoprotective energy dissipation in vivo, we isolated Arabidopsis xanthophyll cycle mutants by screening for altered nonphotochemical quenching of chlorophyll fluorescence. The npq1 mutants are unable to convert violaxanthin to zeaxanthin in excessive light, whereas the npq2 mutants accumulate zeaxanthin constitutively. The npq2 mutants are new alleles of aba1, the zeaxanthin epoxidase gene. The high levels of zeaxanthin in npq2 affected the kinetics of induction and relaxation but not the extent of nonphotochemical quenching. Genetic mapping, DNA sequencing, and complementation of npq1 demonstrated that this mutation affects the structural gene encoding violaxanthin deepoxidase. The npq1 mutant exhibited greatly reduced nonphotochemical quenching, demonstrating that violaxanthin deepoxidation is required for the bulk of rapidly reversible nonphotochemical quenching in Arabidopsis. Altered regulation of photosynthetic energy conversion in npq1 was associated with increased sensitivity to photoinhibition. These results, in conjunction with the analysis of npq mutants of Chlamydomonas, suggest that the role of the xanthophyll cycle in nonphotochemical quenching has been conserved, although different photosynthetic eukaryotes rely on the xanthophyll cycle to different extents for the dissipation of excess absorbed light energy</description><identifier>ISSN: 1040-4651</identifier><identifier>EISSN: 1532-298X</identifier><identifier>DOI: 10.1105/tpc.10.7.1121</identifier><identifier>PMID: 9668132</identifier><language>eng</language><publisher>United States: American Society of Plant Physiologists</publisher><subject>ABSORBANCE ; ABSORBANCIA ; ACTIVIDAD ENZIMATICA ; ACTIVITE ENZYMATIQUE ; ALLELES ; Amino Acid Sequence ; Arabidopsis - enzymology ; Arabidopsis - genetics ; ARABIDOPSIS THALIANA ; Base Sequence ; beta Carotene - analogs & derivatives ; beta Carotene - metabolism ; CARTE GENETIQUE ; CHEMICAL COMPOSITION ; CHLOROPHYLLE ; CHLOROPHYLLS ; Chromosome Mapping ; CHROMOSOME MAPS ; CLOROFILAS ; COMPLEMENTATION ; COMPOSICION QUIMICA ; COMPOSITION CHIMIQUE ; Energy Metabolism ; ENZYMIC ACTIVITY ; ESPECTROMETRIA ; Ethyl Methanesulfonate ; Fast Neutrons ; FEUILLE ; FLUORESCENCE ; FLUORESCENCIA ; GENE ; GENES ; Genes, Plant ; GENETIC MAPPING ; GENETIC MAPS ; GENETIC MARKERS ; Genetic mutation ; GENETIC TRANSFORMATION ; GENETICA ; GENETICS ; GENETIQUE ; HOJAS ; INDUCED MUTATION ; Kinetics ; LEAVES ; LIGHT ; LIGHT INTENSITY ; LINKAGE ; LUMIERE ; Lutein - metabolism ; LUZ ; MAPAS GENETICOS ; MARCADORES GENETICOS ; MARQUEUR GENETIQUE ; MUTACION INDUCIDA ; Mutagenesis ; MUTANT ; MUTANTES ; MUTANTS ; MUTATION PROVOQUEE ; OXIDOREDUCTASES ; Oxidoreductases - chemistry ; Oxidoreductases - genetics ; OXIDORREDUCTASAS ; OXYDOREDUCTASE ; Photoinhibition ; Photons ; Photosynthesis ; Plant cells ; Plants ; Point Mutation ; Polymorphism, Genetic ; SIMPLE SEQUENCE LENGTH POLYMORPHISM ; SPECTRAL DATA ; SPECTROMETRIE ; SPECTROMETRY ; STRUCTURAL GENES ; TRANSFORMACION GENETICA ; TRANSFORMATION GENETIQUE ; VIOLAXANTHIN ; VIOLAXANTHIN DEEPOXIDASE ; XANTHOPHYLLE ; XANTHOPHYLLS ; XANTOFILAS ; ZEAXANTHIN ; ZEAXANTHIN EPOXIDASE ; Zeaxanthins</subject><ispartof>The Plant cell, 1998-07, Vol.10 (7), p.1121-1134</ispartof><rights>Copyright 1998 American Society of Plant Physiologists</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4461-fb0d2f6d4c343e35a1efdef83e2c51e27a19801ec14fffba8f7f7d045e04d9393</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3870716$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3870716$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,881,27903,27904,58217,58450</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9668132$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Niyogi, K.K. (University of California, Berkeley.)</creatorcontrib><creatorcontrib>Grossman, A.R</creatorcontrib><creatorcontrib>Bjorkman, O</creatorcontrib><title>Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion</title><title>The Plant cell</title><addtitle>Plant Cell</addtitle><description>A conserved regulatory mechanism protects plants against the potentially damaging effects of excessive light. Nearly all photosynthetic eukaryotes are able to dissipate excess absorbed light energy in a process that involves xanthophyll pigments. To dissect the role of xanthophylls in photoprotective energy dissipation in vivo, we isolated Arabidopsis xanthophyll cycle mutants by screening for altered nonphotochemical quenching of chlorophyll fluorescence. The npq1 mutants are unable to convert violaxanthin to zeaxanthin in excessive light, whereas the npq2 mutants accumulate zeaxanthin constitutively. The npq2 mutants are new alleles of aba1, the zeaxanthin epoxidase gene. The high levels of zeaxanthin in npq2 affected the kinetics of induction and relaxation but not the extent of nonphotochemical quenching. Genetic mapping, DNA sequencing, and complementation of npq1 demonstrated that this mutation affects the structural gene encoding violaxanthin deepoxidase. The npq1 mutant exhibited greatly reduced nonphotochemical quenching, demonstrating that violaxanthin deepoxidation is required for the bulk of rapidly reversible nonphotochemical quenching in Arabidopsis. Altered regulation of photosynthetic energy conversion in npq1 was associated with increased sensitivity to photoinhibition. These results, in conjunction with the analysis of npq mutants of Chlamydomonas, suggest that the role of the xanthophyll cycle in nonphotochemical quenching has been conserved, although different photosynthetic eukaryotes rely on the xanthophyll cycle to different extents for the dissipation of excess absorbed light energy</description><subject>ABSORBANCE</subject><subject>ABSORBANCIA</subject><subject>ACTIVIDAD ENZIMATICA</subject><subject>ACTIVITE ENZYMATIQUE</subject><subject>ALLELES</subject><subject>Amino Acid Sequence</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>ARABIDOPSIS THALIANA</subject><subject>Base Sequence</subject><subject>beta Carotene - analogs & derivatives</subject><subject>beta Carotene - metabolism</subject><subject>CARTE GENETIQUE</subject><subject>CHEMICAL COMPOSITION</subject><subject>CHLOROPHYLLE</subject><subject>CHLOROPHYLLS</subject><subject>Chromosome Mapping</subject><subject>CHROMOSOME MAPS</subject><subject>CLOROFILAS</subject><subject>COMPLEMENTATION</subject><subject>COMPOSICION QUIMICA</subject><subject>COMPOSITION CHIMIQUE</subject><subject>Energy Metabolism</subject><subject>ENZYMIC ACTIVITY</subject><subject>ESPECTROMETRIA</subject><subject>Ethyl Methanesulfonate</subject><subject>Fast Neutrons</subject><subject>FEUILLE</subject><subject>FLUORESCENCE</subject><subject>FLUORESCENCIA</subject><subject>GENE</subject><subject>GENES</subject><subject>Genes, Plant</subject><subject>GENETIC MAPPING</subject><subject>GENETIC MAPS</subject><subject>GENETIC MARKERS</subject><subject>Genetic mutation</subject><subject>GENETIC TRANSFORMATION</subject><subject>GENETICA</subject><subject>GENETICS</subject><subject>GENETIQUE</subject><subject>HOJAS</subject><subject>INDUCED MUTATION</subject><subject>Kinetics</subject><subject>LEAVES</subject><subject>LIGHT</subject><subject>LIGHT INTENSITY</subject><subject>LINKAGE</subject><subject>LUMIERE</subject><subject>Lutein - metabolism</subject><subject>LUZ</subject><subject>MAPAS GENETICOS</subject><subject>MARCADORES GENETICOS</subject><subject>MARQUEUR GENETIQUE</subject><subject>MUTACION INDUCIDA</subject><subject>Mutagenesis</subject><subject>MUTANT</subject><subject>MUTANTES</subject><subject>MUTANTS</subject><subject>MUTATION PROVOQUEE</subject><subject>OXIDOREDUCTASES</subject><subject>Oxidoreductases - chemistry</subject><subject>Oxidoreductases - genetics</subject><subject>OXIDORREDUCTASAS</subject><subject>OXYDOREDUCTASE</subject><subject>Photoinhibition</subject><subject>Photons</subject><subject>Photosynthesis</subject><subject>Plant cells</subject><subject>Plants</subject><subject>Point Mutation</subject><subject>Polymorphism, Genetic</subject><subject>SIMPLE SEQUENCE LENGTH POLYMORPHISM</subject><subject>SPECTRAL DATA</subject><subject>SPECTROMETRIE</subject><subject>SPECTROMETRY</subject><subject>STRUCTURAL GENES</subject><subject>TRANSFORMACION GENETICA</subject><subject>TRANSFORMATION GENETIQUE</subject><subject>VIOLAXANTHIN</subject><subject>VIOLAXANTHIN DEEPOXIDASE</subject><subject>XANTHOPHYLLE</subject><subject>XANTHOPHYLLS</subject><subject>XANTOFILAS</subject><subject>ZEAXANTHIN</subject><subject>ZEAXANTHIN EPOXIDASE</subject><subject>Zeaxanthins</subject><issn>1040-4651</issn><issn>1532-298X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNpVUc9vFCEUJkZT2-rRowkHr1N5wAzDwUPT-KNJEw_axBthmccOzewwAbZx_ntZd1PriY98P-C9j5B3wK4AWPuxLO6qYlVvHF6Qc2gFb7juf72smEnWyK6F1-Qi5wfGGCjQZ-RMd10Pgp-T9TrZTRjikkOmu32xc8l0QB9mpJY6nEuyE01xQupjomVE-rtqxriM6zRRt7rKhPkvkXC7n2wJcabR02WMJea1arEER3HGtF2pi_Mjplw1b8grb6eMb0_nJbn_8vnnzbfm7vvX25vru8ZJ2UHjN2zgvhukE1KgaC2gr__rBXLXAnJlQfcM0IH03m9s75VXA5MtMjloocUl-XTMXfabHQ6nkcySws6m1UQbzP_MHEazjY8GpGQtr_7m6Hcp5pzQP1mBmUMDpjZwwMocGqj698_fe1KfVl75D0f-IZeYnodxwZQRvWIKun8x3kZjtylkc_8DtNa1Q9G34g_43Jtx</recordid><startdate>19980701</startdate><enddate>19980701</enddate><creator>Niyogi, K.K. (University of California, Berkeley.)</creator><creator>Grossman, A.R</creator><creator>Bjorkman, O</creator><general>American Society of Plant Physiologists</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>19980701</creationdate><title>Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion</title><author>Niyogi, K.K. (University of California, Berkeley.) ; Grossman, A.R ; Bjorkman, O</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4461-fb0d2f6d4c343e35a1efdef83e2c51e27a19801ec14fffba8f7f7d045e04d9393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>ABSORBANCE</topic><topic>ABSORBANCIA</topic><topic>ACTIVIDAD ENZIMATICA</topic><topic>ACTIVITE ENZYMATIQUE</topic><topic>ALLELES</topic><topic>Amino Acid Sequence</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>ARABIDOPSIS THALIANA</topic><topic>Base Sequence</topic><topic>beta Carotene - analogs & derivatives</topic><topic>beta Carotene - metabolism</topic><topic>CARTE GENETIQUE</topic><topic>CHEMICAL COMPOSITION</topic><topic>CHLOROPHYLLE</topic><topic>CHLOROPHYLLS</topic><topic>Chromosome Mapping</topic><topic>CHROMOSOME MAPS</topic><topic>CLOROFILAS</topic><topic>COMPLEMENTATION</topic><topic>COMPOSICION QUIMICA</topic><topic>COMPOSITION CHIMIQUE</topic><topic>Energy Metabolism</topic><topic>ENZYMIC ACTIVITY</topic><topic>ESPECTROMETRIA</topic><topic>Ethyl Methanesulfonate</topic><topic>Fast Neutrons</topic><topic>FEUILLE</topic><topic>FLUORESCENCE</topic><topic>FLUORESCENCIA</topic><topic>GENE</topic><topic>GENES</topic><topic>Genes, Plant</topic><topic>GENETIC MAPPING</topic><topic>GENETIC MAPS</topic><topic>GENETIC MARKERS</topic><topic>Genetic mutation</topic><topic>GENETIC TRANSFORMATION</topic><topic>GENETICA</topic><topic>GENETICS</topic><topic>GENETIQUE</topic><topic>HOJAS</topic><topic>INDUCED MUTATION</topic><topic>Kinetics</topic><topic>LEAVES</topic><topic>LIGHT</topic><topic>LIGHT INTENSITY</topic><topic>LINKAGE</topic><topic>LUMIERE</topic><topic>Lutein - metabolism</topic><topic>LUZ</topic><topic>MAPAS GENETICOS</topic><topic>MARCADORES GENETICOS</topic><topic>MARQUEUR GENETIQUE</topic><topic>MUTACION INDUCIDA</topic><topic>Mutagenesis</topic><topic>MUTANT</topic><topic>MUTANTES</topic><topic>MUTANTS</topic><topic>MUTATION PROVOQUEE</topic><topic>OXIDOREDUCTASES</topic><topic>Oxidoreductases - chemistry</topic><topic>Oxidoreductases - genetics</topic><topic>OXIDORREDUCTASAS</topic><topic>OXYDOREDUCTASE</topic><topic>Photoinhibition</topic><topic>Photons</topic><topic>Photosynthesis</topic><topic>Plant cells</topic><topic>Plants</topic><topic>Point Mutation</topic><topic>Polymorphism, Genetic</topic><topic>SIMPLE SEQUENCE LENGTH POLYMORPHISM</topic><topic>SPECTRAL DATA</topic><topic>SPECTROMETRIE</topic><topic>SPECTROMETRY</topic><topic>STRUCTURAL GENES</topic><topic>TRANSFORMACION GENETICA</topic><topic>TRANSFORMATION GENETIQUE</topic><topic>VIOLAXANTHIN</topic><topic>VIOLAXANTHIN DEEPOXIDASE</topic><topic>XANTHOPHYLLE</topic><topic>XANTHOPHYLLS</topic><topic>XANTOFILAS</topic><topic>ZEAXANTHIN</topic><topic>ZEAXANTHIN EPOXIDASE</topic><topic>Zeaxanthins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Niyogi, K.K. (University of California, Berkeley.)</creatorcontrib><creatorcontrib>Grossman, A.R</creatorcontrib><creatorcontrib>Bjorkman, O</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Plant cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Niyogi, K.K. (University of California, Berkeley.)</au><au>Grossman, A.R</au><au>Bjorkman, O</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion</atitle><jtitle>The Plant cell</jtitle><addtitle>Plant Cell</addtitle><date>1998-07-01</date><risdate>1998</risdate><volume>10</volume><issue>7</issue><spage>1121</spage><epage>1134</epage><pages>1121-1134</pages><issn>1040-4651</issn><eissn>1532-298X</eissn><abstract>A conserved regulatory mechanism protects plants against the potentially damaging effects of excessive light. Nearly all photosynthetic eukaryotes are able to dissipate excess absorbed light energy in a process that involves xanthophyll pigments. To dissect the role of xanthophylls in photoprotective energy dissipation in vivo, we isolated Arabidopsis xanthophyll cycle mutants by screening for altered nonphotochemical quenching of chlorophyll fluorescence. The npq1 mutants are unable to convert violaxanthin to zeaxanthin in excessive light, whereas the npq2 mutants accumulate zeaxanthin constitutively. The npq2 mutants are new alleles of aba1, the zeaxanthin epoxidase gene. The high levels of zeaxanthin in npq2 affected the kinetics of induction and relaxation but not the extent of nonphotochemical quenching. Genetic mapping, DNA sequencing, and complementation of npq1 demonstrated that this mutation affects the structural gene encoding violaxanthin deepoxidase. The npq1 mutant exhibited greatly reduced nonphotochemical quenching, demonstrating that violaxanthin deepoxidation is required for the bulk of rapidly reversible nonphotochemical quenching in Arabidopsis. Altered regulation of photosynthetic energy conversion in npq1 was associated with increased sensitivity to photoinhibition. These results, in conjunction with the analysis of npq mutants of Chlamydomonas, suggest that the role of the xanthophyll cycle in nonphotochemical quenching has been conserved, although different photosynthetic eukaryotes rely on the xanthophyll cycle to different extents for the dissipation of excess absorbed light energy</abstract><cop>United States</cop><pub>American Society of Plant Physiologists</pub><pmid>9668132</pmid><doi>10.1105/tpc.10.7.1121</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-4651 |
ispartof | The Plant cell, 1998-07, Vol.10 (7), p.1121-1134 |
issn | 1040-4651 1532-298X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_144052 |
source | JSTOR Archival Journals and Primary Sources Collection【Remote access available】; Oxford Journals Online |
subjects | ABSORBANCE ABSORBANCIA ACTIVIDAD ENZIMATICA ACTIVITE ENZYMATIQUE ALLELES Amino Acid Sequence Arabidopsis - enzymology Arabidopsis - genetics ARABIDOPSIS THALIANA Base Sequence beta Carotene - analogs & derivatives beta Carotene - metabolism CARTE GENETIQUE CHEMICAL COMPOSITION CHLOROPHYLLE CHLOROPHYLLS Chromosome Mapping CHROMOSOME MAPS CLOROFILAS COMPLEMENTATION COMPOSICION QUIMICA COMPOSITION CHIMIQUE Energy Metabolism ENZYMIC ACTIVITY ESPECTROMETRIA Ethyl Methanesulfonate Fast Neutrons FEUILLE FLUORESCENCE FLUORESCENCIA GENE GENES Genes, Plant GENETIC MAPPING GENETIC MAPS GENETIC MARKERS Genetic mutation GENETIC TRANSFORMATION GENETICA GENETICS GENETIQUE HOJAS INDUCED MUTATION Kinetics LEAVES LIGHT LIGHT INTENSITY LINKAGE LUMIERE Lutein - metabolism LUZ MAPAS GENETICOS MARCADORES GENETICOS MARQUEUR GENETIQUE MUTACION INDUCIDA Mutagenesis MUTANT MUTANTES MUTANTS MUTATION PROVOQUEE OXIDOREDUCTASES Oxidoreductases - chemistry Oxidoreductases - genetics OXIDORREDUCTASAS OXYDOREDUCTASE Photoinhibition Photons Photosynthesis Plant cells Plants Point Mutation Polymorphism, Genetic SIMPLE SEQUENCE LENGTH POLYMORPHISM SPECTRAL DATA SPECTROMETRIE SPECTROMETRY STRUCTURAL GENES TRANSFORMACION GENETICA TRANSFORMATION GENETIQUE VIOLAXANTHIN VIOLAXANTHIN DEEPOXIDASE XANTHOPHYLLE XANTHOPHYLLS XANTOFILAS ZEAXANTHIN ZEAXANTHIN EPOXIDASE Zeaxanthins |
title | Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T13%3A24%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arabidopsis%20mutants%20define%20a%20central%20role%20for%20the%20xanthophyll%20cycle%20in%20the%20regulation%20of%20photosynthetic%20energy%20conversion&rft.jtitle=The%20Plant%20cell&rft.au=Niyogi,%20K.K.%20(University%20of%20California,%20Berkeley.)&rft.date=1998-07-01&rft.volume=10&rft.issue=7&rft.spage=1121&rft.epage=1134&rft.pages=1121-1134&rft.issn=1040-4651&rft.eissn=1532-298X&rft_id=info:doi/10.1105/tpc.10.7.1121&rft_dat=%3Cjstor_pubme%3E3870716%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4461-fb0d2f6d4c343e35a1efdef83e2c51e27a19801ec14fffba8f7f7d045e04d9393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/9668132&rft_jstor_id=3870716&rfr_iscdi=true |