Loading…

Simulating the Collaborative Cross: Power of Quantitative Trait Loci Detection and Mapping Resolution in Large Sets of Recombinant Inbred Strains of Mice

It has been suggested that the collaborative cross, a large set of recombinant inbred strains derived from eight inbred mouse strains, would be a powerful resource for the dissection of complex phenotypes. Here we use simulation to investigate the power of the collaborative cross to detect and map s...

Full description

Saved in:
Bibliographic Details
Published in:Genetics (Austin) 2006-03, Vol.172 (3), p.1783-1797
Main Authors: Valdar, William, Flint, Jonathan, Mott, Richard
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c590t-ad378c1c149cb7419e4e10ba5f1846f6746627d9fe607d9d02b4dd894d8bd9f63
cites cdi_FETCH-LOGICAL-c590t-ad378c1c149cb7419e4e10ba5f1846f6746627d9fe607d9d02b4dd894d8bd9f63
container_end_page 1797
container_issue 3
container_start_page 1783
container_title Genetics (Austin)
container_volume 172
creator Valdar, William
Flint, Jonathan
Mott, Richard
description It has been suggested that the collaborative cross, a large set of recombinant inbred strains derived from eight inbred mouse strains, would be a powerful resource for the dissection of complex phenotypes. Here we use simulation to investigate the power of the collaborative cross to detect and map small genetic effects. We show that for a fixed population of 1000 individuals, 500 RI lines bred using a modified version of the collaborative cross design are adequate to map a single additive locus that accounts for 5% of the phenotypic variation to within 0.96 cM. In the presence of strong epistasis more strains can improve detection, but 500 lines still provide sufficient resolution to meet most goals of the collaborative cross. However, even with a very large panel of RILs, mapping resolution may not be sufficient to identify single genes unambiguously. Our results are generally applicable to the design of RILs in other species.
doi_str_mv 10.1534/genetics.104.039313
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1456308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19582981</sourcerecordid><originalsourceid>FETCH-LOGICAL-c590t-ad378c1c149cb7419e4e10ba5f1846f6746627d9fe607d9d02b4dd894d8bd9f63</originalsourceid><addsrcrecordid>eNqFkk1vEzEQhlcIRNPAL0BCFgd6SvCsvd5dDpVQ-KqUCmjK2fJ6ZxNXu3awvY34KfxbnCZ8XnoaeeaZV-OZN8ueAZ1DwfirNVqMRoc5UD6nrGbAHmQTqDmb5YLBw2xCKYiZKBmcZKch3FBKRV1Uj7MTEExAzotJ9mNlhrFX0dg1iRskC9f3qnE-ZW7Ty7sQXpPPboeeuI58GZWNJh6K116ZSJZOG_IWI-ponCXKtuRSbbd7vSsMrh_v0saSpfJrJCuMYa90hdoNjbFJj1zYxmNLVjEJ2rvqpdH4JHvUqT7g02OcZl_fv7tefJwtP324WLxZznRR0zhTLSsrDRp4rZuSQ40cgTaq6KDiohMlFyIv27pDQVNoad7wtq1q3lZNygo2zc4PutuxGbDVaNMcvdx6Myj_XTpl5L8VazZy7W4l8EIwWiWBl0cB776NGKIcTNCY9mjRjUGKshR1Sfm9IKTj5HUF94Ml8JzmLIEv_gNv3OhtWpfMgQMAS9Q0YwdI76_psfv9N6By7yT5y0kpweXBSanr-d9r-dNztE4Czg7Axqw3O-NRhkH1fcJB7nY7KHPJ0qQVYz8BdRrWgA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214111302</pqid></control><display><type>article</type><title>Simulating the Collaborative Cross: Power of Quantitative Trait Loci Detection and Mapping Resolution in Large Sets of Recombinant Inbred Strains of Mice</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><source>Oxford Journals Online</source><source>Alma/SFX Local Collection</source><creator>Valdar, William ; Flint, Jonathan ; Mott, Richard</creator><creatorcontrib>Valdar, William ; Flint, Jonathan ; Mott, Richard</creatorcontrib><description>It has been suggested that the collaborative cross, a large set of recombinant inbred strains derived from eight inbred mouse strains, would be a powerful resource for the dissection of complex phenotypes. Here we use simulation to investigate the power of the collaborative cross to detect and map small genetic effects. We show that for a fixed population of 1000 individuals, 500 RI lines bred using a modified version of the collaborative cross design are adequate to map a single additive locus that accounts for 5% of the phenotypic variation to within 0.96 cM. In the presence of strong epistasis more strains can improve detection, but 500 lines still provide sufficient resolution to meet most goals of the collaborative cross. However, even with a very large panel of RILs, mapping resolution may not be sufficient to identify single genes unambiguously. Our results are generally applicable to the design of RILs in other species.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.104.039313</identifier><identifier>PMID: 16361245</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Soc America</publisher><subject>Animals ; Chromosomes ; Computer Simulation ; Confidence intervals ; Crosses, Genetic ; Design ; Epistasis, Genetic ; Genetic diversity ; Genetic Drift ; Genetic Markers ; Genomics ; Haplotypes ; Inbreeding ; Investigations ; Mice ; Mice, Inbred A ; Mice, Inbred AKR ; Mice, Inbred BALB C ; Mice, Inbred C3H ; Mice, Inbred C57BL ; Mice, Inbred CBA ; Mice, Inbred DBA ; Models, Genetic ; Physical Chromosome Mapping - methods ; Population ; Quantitative Trait Loci ; Studies</subject><ispartof>Genetics (Austin), 2006-03, Vol.172 (3), p.1783-1797</ispartof><rights>Copyright Genetics Society of America Mar 2006</rights><rights>Copyright © 2006 by the Genetics Society of America 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c590t-ad378c1c149cb7419e4e10ba5f1846f6746627d9fe607d9d02b4dd894d8bd9f63</citedby><cites>FETCH-LOGICAL-c590t-ad378c1c149cb7419e4e10ba5f1846f6746627d9fe607d9d02b4dd894d8bd9f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16361245$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Valdar, William</creatorcontrib><creatorcontrib>Flint, Jonathan</creatorcontrib><creatorcontrib>Mott, Richard</creatorcontrib><title>Simulating the Collaborative Cross: Power of Quantitative Trait Loci Detection and Mapping Resolution in Large Sets of Recombinant Inbred Strains of Mice</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>It has been suggested that the collaborative cross, a large set of recombinant inbred strains derived from eight inbred mouse strains, would be a powerful resource for the dissection of complex phenotypes. Here we use simulation to investigate the power of the collaborative cross to detect and map small genetic effects. We show that for a fixed population of 1000 individuals, 500 RI lines bred using a modified version of the collaborative cross design are adequate to map a single additive locus that accounts for 5% of the phenotypic variation to within 0.96 cM. In the presence of strong epistasis more strains can improve detection, but 500 lines still provide sufficient resolution to meet most goals of the collaborative cross. However, even with a very large panel of RILs, mapping resolution may not be sufficient to identify single genes unambiguously. Our results are generally applicable to the design of RILs in other species.</description><subject>Animals</subject><subject>Chromosomes</subject><subject>Computer Simulation</subject><subject>Confidence intervals</subject><subject>Crosses, Genetic</subject><subject>Design</subject><subject>Epistasis, Genetic</subject><subject>Genetic diversity</subject><subject>Genetic Drift</subject><subject>Genetic Markers</subject><subject>Genomics</subject><subject>Haplotypes</subject><subject>Inbreeding</subject><subject>Investigations</subject><subject>Mice</subject><subject>Mice, Inbred A</subject><subject>Mice, Inbred AKR</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Inbred C3H</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Inbred CBA</subject><subject>Mice, Inbred DBA</subject><subject>Models, Genetic</subject><subject>Physical Chromosome Mapping - methods</subject><subject>Population</subject><subject>Quantitative Trait Loci</subject><subject>Studies</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkk1vEzEQhlcIRNPAL0BCFgd6SvCsvd5dDpVQ-KqUCmjK2fJ6ZxNXu3awvY34KfxbnCZ8XnoaeeaZV-OZN8ueAZ1DwfirNVqMRoc5UD6nrGbAHmQTqDmb5YLBw2xCKYiZKBmcZKch3FBKRV1Uj7MTEExAzotJ9mNlhrFX0dg1iRskC9f3qnE-ZW7Ty7sQXpPPboeeuI58GZWNJh6K116ZSJZOG_IWI-ponCXKtuRSbbd7vSsMrh_v0saSpfJrJCuMYa90hdoNjbFJj1zYxmNLVjEJ2rvqpdH4JHvUqT7g02OcZl_fv7tefJwtP324WLxZznRR0zhTLSsrDRp4rZuSQ40cgTaq6KDiohMlFyIv27pDQVNoad7wtq1q3lZNygo2zc4PutuxGbDVaNMcvdx6Myj_XTpl5L8VazZy7W4l8EIwWiWBl0cB776NGKIcTNCY9mjRjUGKshR1Sfm9IKTj5HUF94Ml8JzmLIEv_gNv3OhtWpfMgQMAS9Q0YwdI76_psfv9N6By7yT5y0kpweXBSanr-d9r-dNztE4Czg7Axqw3O-NRhkH1fcJB7nY7KHPJ0qQVYz8BdRrWgA</recordid><startdate>20060301</startdate><enddate>20060301</enddate><creator>Valdar, William</creator><creator>Flint, Jonathan</creator><creator>Mott, Richard</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><general>Copyright © 2006 by the Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060301</creationdate><title>Simulating the Collaborative Cross: Power of Quantitative Trait Loci Detection and Mapping Resolution in Large Sets of Recombinant Inbred Strains of Mice</title><author>Valdar, William ; Flint, Jonathan ; Mott, Richard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c590t-ad378c1c149cb7419e4e10ba5f1846f6746627d9fe607d9d02b4dd894d8bd9f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Chromosomes</topic><topic>Computer Simulation</topic><topic>Confidence intervals</topic><topic>Crosses, Genetic</topic><topic>Design</topic><topic>Epistasis, Genetic</topic><topic>Genetic diversity</topic><topic>Genetic Drift</topic><topic>Genetic Markers</topic><topic>Genomics</topic><topic>Haplotypes</topic><topic>Inbreeding</topic><topic>Investigations</topic><topic>Mice</topic><topic>Mice, Inbred A</topic><topic>Mice, Inbred AKR</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Inbred C3H</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Inbred CBA</topic><topic>Mice, Inbred DBA</topic><topic>Models, Genetic</topic><topic>Physical Chromosome Mapping - methods</topic><topic>Population</topic><topic>Quantitative Trait Loci</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valdar, William</creatorcontrib><creatorcontrib>Flint, Jonathan</creatorcontrib><creatorcontrib>Mott, Richard</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest_Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valdar, William</au><au>Flint, Jonathan</au><au>Mott, Richard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simulating the Collaborative Cross: Power of Quantitative Trait Loci Detection and Mapping Resolution in Large Sets of Recombinant Inbred Strains of Mice</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2006-03-01</date><risdate>2006</risdate><volume>172</volume><issue>3</issue><spage>1783</spage><epage>1797</epage><pages>1783-1797</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>It has been suggested that the collaborative cross, a large set of recombinant inbred strains derived from eight inbred mouse strains, would be a powerful resource for the dissection of complex phenotypes. Here we use simulation to investigate the power of the collaborative cross to detect and map small genetic effects. We show that for a fixed population of 1000 individuals, 500 RI lines bred using a modified version of the collaborative cross design are adequate to map a single additive locus that accounts for 5% of the phenotypic variation to within 0.96 cM. In the presence of strong epistasis more strains can improve detection, but 500 lines still provide sufficient resolution to meet most goals of the collaborative cross. However, even with a very large panel of RILs, mapping resolution may not be sufficient to identify single genes unambiguously. Our results are generally applicable to the design of RILs in other species.</abstract><cop>United States</cop><pub>Genetics Soc America</pub><pmid>16361245</pmid><doi>10.1534/genetics.104.039313</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-6731
ispartof Genetics (Austin), 2006-03, Vol.172 (3), p.1783-1797
issn 0016-6731
1943-2631
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1456308
source Freely Accessible Science Journals - check A-Z of ejournals; Oxford Journals Online; Alma/SFX Local Collection
subjects Animals
Chromosomes
Computer Simulation
Confidence intervals
Crosses, Genetic
Design
Epistasis, Genetic
Genetic diversity
Genetic Drift
Genetic Markers
Genomics
Haplotypes
Inbreeding
Investigations
Mice
Mice, Inbred A
Mice, Inbred AKR
Mice, Inbred BALB C
Mice, Inbred C3H
Mice, Inbred C57BL
Mice, Inbred CBA
Mice, Inbred DBA
Models, Genetic
Physical Chromosome Mapping - methods
Population
Quantitative Trait Loci
Studies
title Simulating the Collaborative Cross: Power of Quantitative Trait Loci Detection and Mapping Resolution in Large Sets of Recombinant Inbred Strains of Mice
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A51%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simulating%20the%20Collaborative%20Cross:%20Power%20of%20Quantitative%20Trait%20Loci%20Detection%20and%20Mapping%20Resolution%20in%20Large%20Sets%20of%20Recombinant%20Inbred%20Strains%20of%20Mice&rft.jtitle=Genetics%20(Austin)&rft.au=Valdar,%20William&rft.date=2006-03-01&rft.volume=172&rft.issue=3&rft.spage=1783&rft.epage=1797&rft.pages=1783-1797&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.104.039313&rft_dat=%3Cproquest_pubme%3E19582981%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c590t-ad378c1c149cb7419e4e10ba5f1846f6746627d9fe607d9d02b4dd894d8bd9f63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=214111302&rft_id=info:pmid/16361245&rfr_iscdi=true