Loading…
Multiple Bromodomain Genes Are Involved in Restricting the Spread of Heterochromatic Silencing at the Saccharomyces cerevisiae HMR-tRNA Boundary
The transfer RNA gene downstream from the HMR locus in S. cerevisiae functions as part of a boundary (barrier) element that restricts the spread of heterochromatic gene silencing into the downstream region of chromosome III. A genetic screen for identifying additional genes that, when mutated, allow...
Saved in:
Published in: | Genetics (Austin) 2005-11, Vol.171 (3), p.913-922 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c478t-370ca371e2b5caeed55ea6dd15258d9a531d01107212c5b2613a3a7f71f922d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c478t-370ca371e2b5caeed55ea6dd15258d9a531d01107212c5b2613a3a7f71f922d3 |
container_end_page | 922 |
container_issue | 3 |
container_start_page | 913 |
container_title | Genetics (Austin) |
container_volume | 171 |
creator | Jambunathan, Nithya Martinez, Adam W Robert, Elizabeth C Agochukwu, Nneamaka B Ibos, Megan E Dugas, Sandra L Donze, David |
description | The transfer RNA gene downstream from the HMR locus in S. cerevisiae functions as part of a boundary (barrier) element that restricts the spread of heterochromatic gene silencing into the downstream region of chromosome III. A genetic screen for identifying additional genes that, when mutated, allow inappropriate spreading of silencing from HMR through the tRNA gene was performed. YTA7, a gene containing bromodomain and ATPase homologies, was identified multiple times. Previously, others had shown that the bromodomain protein Bdf1p functions to restrict silencing at yeast euchromatin-heterochromatin boundaries; therefore we deleted nonessential bromodomain-containing genes to test their effects on heterochromatin spreading. Deletion of RSC2, coding for a component of the RSC chromatin-remodeling complex, resulted in a significant spread of silencing at HMR. Since the bromodomain of YTA7 lacks a key tyrosine residue shown to be important for acetyllysine binding in other bromodomains, we confirmed that a GST-Yta7p bromodomain fusion was capable of binding to histones in vitro. Epistasis analysis suggests that YTA7 and the HMR-tRNA function independently to restrict the spread of silencing, while RSC2 may function through the tRNA element. Our results suggest that multiple bromodomain proteins are involved in restricting the propagation of heterochromatin at HMR. |
doi_str_mv | 10.1534/genetics.105.046938 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1456849</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>17135383</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-370ca371e2b5caeed55ea6dd15258d9a531d01107212c5b2613a3a7f71f922d3</originalsourceid><addsrcrecordid>eNqFksFu1DAQhiMEokvhCZCQxaG3LB47dpIL0raCbqUWpG3vlteebFwl8WInu-pb8Mi42oUCl54szXzz-5_Rn2Xvgc5B8OLTBgccnYlzoGJOC1nz6kU2g7rgOZMcXmYzSkHmsuRwkr2J8Z5SKmtRvc5OQNKyZozPsp83Uze6bYfkPPjeW99rN5DLJB3JIiC5Gna-26ElqbrCOAZnRjdsyNgiud0G1Jb4hixxxOBNmyR0skRuXYeDeeT0eEC1Ma1O7QeThA0G3LnoNJLlzSofV98W5NxPg9Xh4W32qtFdxHfH9zS7-_rl7mKZX3-_vLpYXOemKKsx5yU1mpeAbC2MRrRCoJbWgmCisrUWHCwFoCUDZsSaSeCa67IpoUmLW36afT7Ibqd1j9bgMAbdqW1wfTKhvHbq387gWrXxOwWFkFVRJ4Gzo0DwP6Z0GdW7aLDr9IB-ikpWVfpUVs-CjDJJKyqfBaEELnjFE_jxP_DeT2FI11IMCgCoqUgQP0Am-BgDNn92A6oe86N-5ycVhDrkJ019-PssTzPHwDyZbN2m3buAKva66xIOar_fJ4-Kqxo4_wWZjtK6</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214111905</pqid></control><display><type>article</type><title>Multiple Bromodomain Genes Are Involved in Restricting the Spread of Heterochromatic Silencing at the Saccharomyces cerevisiae HMR-tRNA Boundary</title><source>Freely Accessible Science Journals - check A-Z of ejournals</source><source>Oxford Journals Online</source><source>Alma/SFX Local Collection</source><creator>Jambunathan, Nithya ; Martinez, Adam W ; Robert, Elizabeth C ; Agochukwu, Nneamaka B ; Ibos, Megan E ; Dugas, Sandra L ; Donze, David</creator><creatorcontrib>Jambunathan, Nithya ; Martinez, Adam W ; Robert, Elizabeth C ; Agochukwu, Nneamaka B ; Ibos, Megan E ; Dugas, Sandra L ; Donze, David</creatorcontrib><description>The transfer RNA gene downstream from the HMR locus in S. cerevisiae functions as part of a boundary (barrier) element that restricts the spread of heterochromatic gene silencing into the downstream region of chromosome III. A genetic screen for identifying additional genes that, when mutated, allow inappropriate spreading of silencing from HMR through the tRNA gene was performed. YTA7, a gene containing bromodomain and ATPase homologies, was identified multiple times. Previously, others had shown that the bromodomain protein Bdf1p functions to restrict silencing at yeast euchromatin-heterochromatin boundaries; therefore we deleted nonessential bromodomain-containing genes to test their effects on heterochromatin spreading. Deletion of RSC2, coding for a component of the RSC chromatin-remodeling complex, resulted in a significant spread of silencing at HMR. Since the bromodomain of YTA7 lacks a key tyrosine residue shown to be important for acetyllysine binding in other bromodomains, we confirmed that a GST-Yta7p bromodomain fusion was capable of binding to histones in vitro. Epistasis analysis suggests that YTA7 and the HMR-tRNA function independently to restrict the spread of silencing, while RSC2 may function through the tRNA element. Our results suggest that multiple bromodomain proteins are involved in restricting the propagation of heterochromatin at HMR.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.105.046938</identifier><identifier>PMID: 16079223</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Soc America</publisher><subject>Amino Acid Sequence ; Chromatin ; Chromosomal Proteins, Non-Histone - genetics ; Chromosomal Proteins, Non-Histone - physiology ; Gene Deletion ; Gene expression ; Gene Silencing - physiology ; Genetics ; Heterochromatin - physiology ; Insulator Elements - genetics ; Investigations ; Molecular biology ; Molecular Sequence Data ; Protein Structure, Tertiary - genetics ; Proteins ; RNA, Transfer - genetics ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - physiology ; Silent Information Regulator Proteins, Saccharomyces cerevisiae - physiology</subject><ispartof>Genetics (Austin), 2005-11, Vol.171 (3), p.913-922</ispartof><rights>Copyright Genetics Society of America Nov 2005</rights><rights>Copyright © 2005 by the Genetics Society of America 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-370ca371e2b5caeed55ea6dd15258d9a531d01107212c5b2613a3a7f71f922d3</citedby><cites>FETCH-LOGICAL-c478t-370ca371e2b5caeed55ea6dd15258d9a531d01107212c5b2613a3a7f71f922d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16079223$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jambunathan, Nithya</creatorcontrib><creatorcontrib>Martinez, Adam W</creatorcontrib><creatorcontrib>Robert, Elizabeth C</creatorcontrib><creatorcontrib>Agochukwu, Nneamaka B</creatorcontrib><creatorcontrib>Ibos, Megan E</creatorcontrib><creatorcontrib>Dugas, Sandra L</creatorcontrib><creatorcontrib>Donze, David</creatorcontrib><title>Multiple Bromodomain Genes Are Involved in Restricting the Spread of Heterochromatic Silencing at the Saccharomyces cerevisiae HMR-tRNA Boundary</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>The transfer RNA gene downstream from the HMR locus in S. cerevisiae functions as part of a boundary (barrier) element that restricts the spread of heterochromatic gene silencing into the downstream region of chromosome III. A genetic screen for identifying additional genes that, when mutated, allow inappropriate spreading of silencing from HMR through the tRNA gene was performed. YTA7, a gene containing bromodomain and ATPase homologies, was identified multiple times. Previously, others had shown that the bromodomain protein Bdf1p functions to restrict silencing at yeast euchromatin-heterochromatin boundaries; therefore we deleted nonessential bromodomain-containing genes to test their effects on heterochromatin spreading. Deletion of RSC2, coding for a component of the RSC chromatin-remodeling complex, resulted in a significant spread of silencing at HMR. Since the bromodomain of YTA7 lacks a key tyrosine residue shown to be important for acetyllysine binding in other bromodomains, we confirmed that a GST-Yta7p bromodomain fusion was capable of binding to histones in vitro. Epistasis analysis suggests that YTA7 and the HMR-tRNA function independently to restrict the spread of silencing, while RSC2 may function through the tRNA element. Our results suggest that multiple bromodomain proteins are involved in restricting the propagation of heterochromatin at HMR.</description><subject>Amino Acid Sequence</subject><subject>Chromatin</subject><subject>Chromosomal Proteins, Non-Histone - genetics</subject><subject>Chromosomal Proteins, Non-Histone - physiology</subject><subject>Gene Deletion</subject><subject>Gene expression</subject><subject>Gene Silencing - physiology</subject><subject>Genetics</subject><subject>Heterochromatin - physiology</subject><subject>Insulator Elements - genetics</subject><subject>Investigations</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>Protein Structure, Tertiary - genetics</subject><subject>Proteins</subject><subject>RNA, Transfer - genetics</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - physiology</subject><subject>Silent Information Regulator Proteins, Saccharomyces cerevisiae - physiology</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNqFksFu1DAQhiMEokvhCZCQxaG3LB47dpIL0raCbqUWpG3vlteebFwl8WInu-pb8Mi42oUCl54szXzz-5_Rn2Xvgc5B8OLTBgccnYlzoGJOC1nz6kU2g7rgOZMcXmYzSkHmsuRwkr2J8Z5SKmtRvc5OQNKyZozPsp83Uze6bYfkPPjeW99rN5DLJB3JIiC5Gna-26ElqbrCOAZnRjdsyNgiud0G1Jb4hixxxOBNmyR0skRuXYeDeeT0eEC1Ma1O7QeThA0G3LnoNJLlzSofV98W5NxPg9Xh4W32qtFdxHfH9zS7-_rl7mKZX3-_vLpYXOemKKsx5yU1mpeAbC2MRrRCoJbWgmCisrUWHCwFoCUDZsSaSeCa67IpoUmLW36afT7Ibqd1j9bgMAbdqW1wfTKhvHbq387gWrXxOwWFkFVRJ4Gzo0DwP6Z0GdW7aLDr9IB-ikpWVfpUVs-CjDJJKyqfBaEELnjFE_jxP_DeT2FI11IMCgCoqUgQP0Am-BgDNn92A6oe86N-5ycVhDrkJ019-PssTzPHwDyZbN2m3buAKva66xIOar_fJ4-Kqxo4_wWZjtK6</recordid><startdate>20051101</startdate><enddate>20051101</enddate><creator>Jambunathan, Nithya</creator><creator>Martinez, Adam W</creator><creator>Robert, Elizabeth C</creator><creator>Agochukwu, Nneamaka B</creator><creator>Ibos, Megan E</creator><creator>Dugas, Sandra L</creator><creator>Donze, David</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><general>Copyright © 2005 by the Genetics Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20051101</creationdate><title>Multiple Bromodomain Genes Are Involved in Restricting the Spread of Heterochromatic Silencing at the Saccharomyces cerevisiae HMR-tRNA Boundary</title><author>Jambunathan, Nithya ; Martinez, Adam W ; Robert, Elizabeth C ; Agochukwu, Nneamaka B ; Ibos, Megan E ; Dugas, Sandra L ; Donze, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-370ca371e2b5caeed55ea6dd15258d9a531d01107212c5b2613a3a7f71f922d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Amino Acid Sequence</topic><topic>Chromatin</topic><topic>Chromosomal Proteins, Non-Histone - genetics</topic><topic>Chromosomal Proteins, Non-Histone - physiology</topic><topic>Gene Deletion</topic><topic>Gene expression</topic><topic>Gene Silencing - physiology</topic><topic>Genetics</topic><topic>Heterochromatin - physiology</topic><topic>Insulator Elements - genetics</topic><topic>Investigations</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>Protein Structure, Tertiary - genetics</topic><topic>Proteins</topic><topic>RNA, Transfer - genetics</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - physiology</topic><topic>Silent Information Regulator Proteins, Saccharomyces cerevisiae - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jambunathan, Nithya</creatorcontrib><creatorcontrib>Martinez, Adam W</creatorcontrib><creatorcontrib>Robert, Elizabeth C</creatorcontrib><creatorcontrib>Agochukwu, Nneamaka B</creatorcontrib><creatorcontrib>Ibos, Megan E</creatorcontrib><creatorcontrib>Dugas, Sandra L</creatorcontrib><creatorcontrib>Donze, David</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>ProQuest Family Health</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jambunathan, Nithya</au><au>Martinez, Adam W</au><au>Robert, Elizabeth C</au><au>Agochukwu, Nneamaka B</au><au>Ibos, Megan E</au><au>Dugas, Sandra L</au><au>Donze, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Bromodomain Genes Are Involved in Restricting the Spread of Heterochromatic Silencing at the Saccharomyces cerevisiae HMR-tRNA Boundary</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2005-11-01</date><risdate>2005</risdate><volume>171</volume><issue>3</issue><spage>913</spage><epage>922</epage><pages>913-922</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>The transfer RNA gene downstream from the HMR locus in S. cerevisiae functions as part of a boundary (barrier) element that restricts the spread of heterochromatic gene silencing into the downstream region of chromosome III. A genetic screen for identifying additional genes that, when mutated, allow inappropriate spreading of silencing from HMR through the tRNA gene was performed. YTA7, a gene containing bromodomain and ATPase homologies, was identified multiple times. Previously, others had shown that the bromodomain protein Bdf1p functions to restrict silencing at yeast euchromatin-heterochromatin boundaries; therefore we deleted nonessential bromodomain-containing genes to test their effects on heterochromatin spreading. Deletion of RSC2, coding for a component of the RSC chromatin-remodeling complex, resulted in a significant spread of silencing at HMR. Since the bromodomain of YTA7 lacks a key tyrosine residue shown to be important for acetyllysine binding in other bromodomains, we confirmed that a GST-Yta7p bromodomain fusion was capable of binding to histones in vitro. Epistasis analysis suggests that YTA7 and the HMR-tRNA function independently to restrict the spread of silencing, while RSC2 may function through the tRNA element. Our results suggest that multiple bromodomain proteins are involved in restricting the propagation of heterochromatin at HMR.</abstract><cop>United States</cop><pub>Genetics Soc America</pub><pmid>16079223</pmid><doi>10.1534/genetics.105.046938</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-6731 |
ispartof | Genetics (Austin), 2005-11, Vol.171 (3), p.913-922 |
issn | 0016-6731 1943-2631 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1456849 |
source | Freely Accessible Science Journals - check A-Z of ejournals; Oxford Journals Online; Alma/SFX Local Collection |
subjects | Amino Acid Sequence Chromatin Chromosomal Proteins, Non-Histone - genetics Chromosomal Proteins, Non-Histone - physiology Gene Deletion Gene expression Gene Silencing - physiology Genetics Heterochromatin - physiology Insulator Elements - genetics Investigations Molecular biology Molecular Sequence Data Protein Structure, Tertiary - genetics Proteins RNA, Transfer - genetics Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - physiology Silent Information Regulator Proteins, Saccharomyces cerevisiae - physiology |
title | Multiple Bromodomain Genes Are Involved in Restricting the Spread of Heterochromatic Silencing at the Saccharomyces cerevisiae HMR-tRNA Boundary |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T16%3A06%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Bromodomain%20Genes%20Are%20Involved%20in%20Restricting%20the%20Spread%20of%20Heterochromatic%20Silencing%20at%20the%20Saccharomyces%20cerevisiae%20HMR-tRNA%20Boundary&rft.jtitle=Genetics%20(Austin)&rft.au=Jambunathan,%20Nithya&rft.date=2005-11-01&rft.volume=171&rft.issue=3&rft.spage=913&rft.epage=922&rft.pages=913-922&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.105.046938&rft_dat=%3Cproquest_pubme%3E17135383%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-370ca371e2b5caeed55ea6dd15258d9a531d01107212c5b2613a3a7f71f922d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=214111905&rft_id=info:pmid/16079223&rfr_iscdi=true |