Loading…

Mutant alleles of small effect are primarily responsible for the loss of fitness with slow inbreeding in Drosophila melanogaster

Multilocus simulation is used to identify genetic models that can account for the observed rates of inbreeding and fitness decline in laboratory populations of Drosophila melanogaster. The experimental populations were maintained under crowded conditions for approximately 200 generations at a harmon...

Full description

Saved in:
Bibliographic Details
Published in:Genetics (Austin) 1998-03, Vol.148 (3), p.1143-1158
Main Author: Latter, B.D.H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multilocus simulation is used to identify genetic models that can account for the observed rates of inbreeding and fitness decline in laboratory populations of Drosophila melanogaster. The experimental populations were maintained under crowded conditions for approximately 200 generations at a harmonic mean population size of Nh approximately 65-70. With a simulated population size of N = 50, and a mean selective disadvantage of homozygotes at individual loci approximately 1-2% or less, it is demonstrated that the mean effective population size over a 200-generation period may be considerably greater than N, with a ratio matching the experimental estimate of Ne/Nh approximately 1.4. The buildup of associative overdominance at electrophoretic marker loci is largely responsible for the stability of gene frequencies and the observed reduction in the rate of inbreeding, with apparent selection coefficients in favor of the heterozygote at neutral marker loci increasing rapidly over the first N generations of inbreeding to values approximately 5-10%. The observed decline in fitness under competitive conditions in populations of size approximately 50 in D. melanogaster therefore primarily results from mutant alleles with mean effects on fitness as homozygotes of sm < or = 0.02. Models with deleterious recessive mutants at the background loci require that the mean selection coefficient against heterozygotes is at most hsm approximately 0.002, with a minimum mutation rate for a single Drosophila autosome 100 cM in length estimated to be in the range 0.05-0.25, assuming an exponential distribution of s. A typical chromosome would be expected to carry at least 100-200 such mutant alleles contributing to the decline in competitive fitness with slow inbreeding.
ISSN:0016-6731
1943-2631
1943-2631
DOI:10.1093/genetics/148.3.1143