Loading…

Nucleotide Polymorphism at the RpII215 Gene in Drosophila subobscura: Weak Selection on Synonymous Mutations

Nucleotide variation in an 8.1-kb fragment encompassing the RpII215 gene, which encodes the largest subunit of the RNA polymerase II complex, is analyzed in a sample of 11 chromosomes from a natural population of Drosophila subobscura. No amino acid polymorphism was detected among the 157 segregatin...

Full description

Saved in:
Bibliographic Details
Published in:Genetics (Austin) 2000-07, Vol.155 (3), p.1245-1252
Main Authors: Llopart, Ana, Aguade, Montserrat
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nucleotide variation in an 8.1-kb fragment encompassing the RpII215 gene, which encodes the largest subunit of the RNA polymerase II complex, is analyzed in a sample of 11 chromosomes from a natural population of Drosophila subobscura. No amino acid polymorphism was detected among the 157 segregating sites. The observed numbers of preferred and unpreferred derived synonymous mutations can be explained by neutral mutational processes. In contrast, preferred mutations segregate at significantly higher frequency than unpreferred mutations, suggesting the action of natural selection. The polymorphism to divergence ratio is different for preferred and unpreferred changes, in agreement with their beneficial and deleterious effects on fitness, respectively. Preferred and unpreferred codons are nonrandomly distributed in the RpII215 gene, leading to a heterogeneous distribution of polymorphic to fixed synonymous differences across this coding region. This intragenic variation of the polymorphism/divergence ratio cannot be explained by different patterns of gene expression, mutation, or recombination rates, and therefore it indicates that selection coefficients for synonymous mutations can vary extensively across a coding region. The application of nucleotide composition stationarity tests in coding and flanking noncoding regions, assumed to behave neutrally, allows the detection of the action of natural selection when stationarity holds in the noncoding region.
ISSN:0016-6731
1943-2631
1943-2631
DOI:10.1093/genetics/155.3.1245