Loading…
Species and Recombination Effects on DNA Variability in the Tomato Genus
Population genetics theory predicts that strong selection for rare, beneficial mutations or against frequent, deleterious mutations reduces polymorphism at linked neutral (or weakly selected) sites. The reduction of genetic variation is expected to be more severe when recombination rates are lower....
Saved in:
Published in: | Genetics (Austin) 2001-08, Vol.158 (4), p.1725-1735 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Population genetics theory predicts that strong selection for rare, beneficial mutations or against frequent, deleterious mutations reduces polymorphism at linked neutral (or weakly selected) sites. The reduction of genetic variation is expected to be more severe when recombination rates are lower. In outbreeding species, low recombination rates are usually confined to certain chromosomal regions, such as centromeres and telomeres. In contrast, in predominantly selfing species, the rarity of double heterozygotes leads to a reduced effective recombination rate in the whole genome. We investigated the effects of restricted recombination on DNA polymorphism in these two cases, analyzing five Lycopersicon species with contrasting mating systems: L. chilense, L. hirsutum, L. peruvianum, L. chmielewskii, and L. pimpinellifolium, of which only the first three species have self-incompatibility alleles. In each species, we determined DNA sequence variation of five single-copy genes located in chromosomal regions with either high or low recombination rate. We found that the mating system has a highly significant effect on the level of polymorphism, whereas recombination has only a weak influence. The effect of recombination on levels of polymorphism in Lycopersicon is much weaker than in other well-studied species, including Drosophila. To explain these observations, we discuss a number of hypotheses, invoking selection, recombination, and demographic factors associated with the mating system. We also provide evidence that L. peruvianum, showing a level of polymorphism (almost 3%) that is comparable to the level of divergence in the whole genus, is the ancestral species from which the other species of the genus Lycopersicon have originated relatively recently. |
---|---|
ISSN: | 0016-6731 1943-2631 1943-2631 |
DOI: | 10.1093/genetics/158.4.1725 |