Loading…

Specification of Germ Cell Fates by FOG-3 Has Been Conserved During Nematode Evolution

Rapid changes in sexual traits are ubiquitous in evolution. To analyze this phenomenon, we are studying species of the genus Caenorhabditis. These animals use one of two different mating systems-male/hermaphroditic, like the model organism Caenorhabditis elegans, or male/female, like C. remanei. Sin...

Full description

Saved in:
Bibliographic Details
Published in:Genetics (Austin) 2001-08, Vol.158 (4), p.1513-1525
Main Authors: Chen, Pei-Jiun, Cho, Soochin, Jin, Suk-Won, Ellis, Ronald E
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Rapid changes in sexual traits are ubiquitous in evolution. To analyze this phenomenon, we are studying species of the genus Caenorhabditis. These animals use one of two different mating systems-male/hermaphroditic, like the model organism Caenorhabditis elegans, or male/female, like C. remanei. Since hermaphrodites are essentially females that produce sperm for self-fertilization, elucidating the control of cell fate in the germ line in each species could provide the key to understanding how these mating systems evolved. In C. elegans, FOG-3 is required to specify that germ cells become sperm. Thus, we cloned its homologs from both C. remanei and C. briggsae. Each species produces a single homolog of FOG-3, and RNA-mediated interference indicates that FOG-3 functions in each species to specify that germ cells develop as sperm rather than as oocytes. What factors account for the different mating systems? Northern analyses and RT-PCR data reveal that the expression of fog-3 is always correlated with spermatogenesis. Since the promoters for all three fog-3 genes contain binding sites for the transcription factor TRA-1A and are capable of driving expression of fog-3 in C. elegans hermaphrodites, we propose that alterations in the upstream sex-determination pathway, perhaps acting through TRA-1A, allow spermatogenesis in C. elegans and C. briggsae XX larvae but not in C. remanei.
ISSN:0016-6731
1943-2631
1943-2631
DOI:10.1093/genetics/158.4.1513