Loading…

Statistical modeling and analysis of the LAGLIDADG family of site-specific endonucleases and identification of an intein that encodes a site-specific endonuclease of the HNH family

The LAGLIDADG and HNH families of site-specific DNA endonucleases encoded by viruses, bacteriophages as well as archaeal, eucaryotic nuclear and organellar genomes are characterized by the sequence motifs ‘LAGLIDADG’ and ‘HNH’, respectively. These endonucleases have been shown to occur in different...

Full description

Saved in:
Bibliographic Details
Published in:Nucleic acids research 1997-11, Vol.25 (22), p.4626-4638
Main Authors: Dalgaard, Jacob Z., Klar, Amar J., Moser, Michael J., Holley, William R., Chatterjee, Aloke, Saira Mian, I.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The LAGLIDADG and HNH families of site-specific DNA endonucleases encoded by viruses, bacteriophages as well as archaeal, eucaryotic nuclear and organellar genomes are characterized by the sequence motifs ‘LAGLIDADG’ and ‘HNH’, respectively. These endonucleases have been shown to occur in different environments: LAGLIDADG endonucleases are found in inteins, archaeal and group I introns and as free standing open reading frames (ORFs); HNH endonucleases occur in group I and group II introns and as ORFs. Here, statistical models (hidden Markov models, HMMs) that encompass both the conserved motifs and more variable regions of these families have been created and employed to characterize known and potential new family members. A number of new, putative LAGLIDADG and HNH endonucleases have been identified including an intein-encoded HNH sequence. Analysis of an HMM-generated multiple alignment of 130 LAGLIDADG family members and the three-dimensional structure of the I-CreI endonuclease has enabled definition of the core elements of the repeated domain (∼90 residues) that is present in this family of proteins. A conserved negatively charged residue is proposed to be involved in catalysis. Phylogenetic analysis of the two families indicates a lack of exchange of endonucleases between different mobile elements (environments) and between hosts from different phylogenetic kingdoms. However, there does appear to have been considerable exchange of endonuclease domains amongst elements of the same type. Such events are suggested to be important for the formation of elements of new specficity.
ISSN:0305-1048
1362-4962
1362-4962
DOI:10.1093/nar/25.22.4626