Loading…

Imaging Peptidoglycan Biosynthesis in Bacillus subtilis with Fluorescent Antibiotics

The peptidoglycan (PG) layers surrounding bacterial cells play an important role in determining cell shape. The machinery controlling when and where new PG is made is not understood, but is proposed to involve interactions between bacterial actin homologs such as Mbl, which forms helical cables with...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2006-07, Vol.103 (29), p.11033-11038
Main Authors: Tiyanont, Kittichoat, Doan, Thierry, Lazarus, Michael B., Fang, Xiao, Rudner, David Z., Walker, Suzanne
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c564t-8376e7398f0864eaebcafa98bf8f0a343060d626b227d1322a21e16bc017fab13
cites cdi_FETCH-LOGICAL-c564t-8376e7398f0864eaebcafa98bf8f0a343060d626b227d1322a21e16bc017fab13
container_end_page 11038
container_issue 29
container_start_page 11033
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 103
creator Tiyanont, Kittichoat
Doan, Thierry
Lazarus, Michael B.
Fang, Xiao
Rudner, David Z.
Walker, Suzanne
description The peptidoglycan (PG) layers surrounding bacterial cells play an important role in determining cell shape. The machinery controlling when and where new PG is made is not understood, but is proposed to involve interactions between bacterial actin homologs such as Mbl, which forms helical cables within cells, and extracellular multiprotein complexes that include penicillin-binding proteins. It has been suggested that labeled antibiotics that bind to PG precursors may be useful for imaging PG to help determine the genes that control the biosynthesis of this polymer. Here, we compare the staining patterns observed in Bacillus subtilis using fluorescent derivatives of two PG-binding antibiotics, vancomycin and ramoplanin. The staining patterns for both probes exhibit a strong dependence on probe concentration, suggesting antibiotic-induced perturbations in PG synthesis. Ramoplanin probes may be better imaging agents than vancomycin probes because they yield clear staining patterns at concentrations well below their minimum inhibitory concentrations. Under some conditions, both ramoplanin and vancomycin probes produce helicoid staining patterns along the cylindrical walls of B. subtilis cells. This sidewall staining is observed in the absence of the cytoskeletal protein Mbl. Although Mbl plays an important role in cell shape determination, our data indicate that other proteins control the spatial localization of the biosynthetic complexes responsible for new PG synthesis along the walls of B. subtilis cells.
doi_str_mv 10.1073/pnas.0600829103
format article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1544169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30049403</jstor_id><sourcerecordid>30049403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-8376e7398f0864eaebcafa98bf8f0a343060d626b227d1322a21e16bc017fab13</originalsourceid><addsrcrecordid>eNqFkk1vEzEQhi0EoqFw5gRacUDisO34Y-31BSlUlFaKBIdytrwbb-LIsYPtLeTf41WiBiohTpbHz7wz83oQeo3hAoOglzuv0wVwgJZIDPQJmmGQuOZMwlM0AyCibhlhZ-hFShsAkE0Lz9EZ5i0lwOkM3d1u9cr6VfXN7LJdhpXb99pXn2xIe5_XJtlU2XLXvXVuTFUau2xdCf60eV1duzFEk3rjczX32XY2ZNunl-jZoF0yr47nOfp-_fnu6qZefP1yezVf1H3DWa5bKrgRVLYDtJwZbbpeD1q23VAimjJaBltywjtCxBJTQjTBBvOuBywG3WF6jj4edHdjtzXLqY2ondpFu9Vxr4K26u8Xb9dqFe4VbhjDXBaBDweB9aO0m_lCTTGgRFCBxf1U7P2xWAw_RpOy2toyuXPamzAmxVveUN6I_4JYUs4l0AK-ewRuwhh9cUwRwAwkZaRAlweojyGlaIaHPjGoaQfUtAPqtAMl4-2frpz446cXoDoCU-ZJjioiFZ4kTsb8E1HD6Fw2v3Jh3xzYTcohPsAUgElWyN-_uc95</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201409342</pqid></control><display><type>article</type><title>Imaging Peptidoglycan Biosynthesis in Bacillus subtilis with Fluorescent Antibiotics</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Tiyanont, Kittichoat ; Doan, Thierry ; Lazarus, Michael B. ; Fang, Xiao ; Rudner, David Z. ; Walker, Suzanne</creator><creatorcontrib>Tiyanont, Kittichoat ; Doan, Thierry ; Lazarus, Michael B. ; Fang, Xiao ; Rudner, David Z. ; Walker, Suzanne</creatorcontrib><description>The peptidoglycan (PG) layers surrounding bacterial cells play an important role in determining cell shape. The machinery controlling when and where new PG is made is not understood, but is proposed to involve interactions between bacterial actin homologs such as Mbl, which forms helical cables within cells, and extracellular multiprotein complexes that include penicillin-binding proteins. It has been suggested that labeled antibiotics that bind to PG precursors may be useful for imaging PG to help determine the genes that control the biosynthesis of this polymer. Here, we compare the staining patterns observed in Bacillus subtilis using fluorescent derivatives of two PG-binding antibiotics, vancomycin and ramoplanin. The staining patterns for both probes exhibit a strong dependence on probe concentration, suggesting antibiotic-induced perturbations in PG synthesis. Ramoplanin probes may be better imaging agents than vancomycin probes because they yield clear staining patterns at concentrations well below their minimum inhibitory concentrations. Under some conditions, both ramoplanin and vancomycin probes produce helicoid staining patterns along the cylindrical walls of B. subtilis cells. This sidewall staining is observed in the absence of the cytoskeletal protein Mbl. Although Mbl plays an important role in cell shape determination, our data indicate that other proteins control the spatial localization of the biosynthetic complexes responsible for new PG synthesis along the walls of B. subtilis cells.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0600829103</identifier><identifier>PMID: 16832063</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actins ; Actins - genetics ; Actins - metabolism ; Antibiotics ; Bacillus subtilis ; Bacillus subtilis - metabolism ; Bacteria ; Bacterial proteins ; Biological Sciences ; Biosynthesis ; Cells ; Chemical synthesis ; Depsipeptides - chemistry ; Depsipeptides - metabolism ; Depsipeptides - pharmacology ; Fluorescent Dyes - chemistry ; Imaging ; Life Sciences ; Lipids ; Microbial sensitivity tests ; Molecular Structure ; Peptidoglycan - biosynthesis ; Polymers ; Probes ; Stem cells ; Vancomycin - chemistry ; Vancomycin - metabolism ; Vancomycin - pharmacology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-07, Vol.103 (29), p.11033-11038</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 18, 2006</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-8376e7398f0864eaebcafa98bf8f0a343060d626b227d1322a21e16bc017fab13</citedby><cites>FETCH-LOGICAL-c564t-8376e7398f0864eaebcafa98bf8f0a343060d626b227d1322a21e16bc017fab13</cites><orcidid>0000-0002-5909-4289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/29.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30049403$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30049403$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16832063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03273717$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tiyanont, Kittichoat</creatorcontrib><creatorcontrib>Doan, Thierry</creatorcontrib><creatorcontrib>Lazarus, Michael B.</creatorcontrib><creatorcontrib>Fang, Xiao</creatorcontrib><creatorcontrib>Rudner, David Z.</creatorcontrib><creatorcontrib>Walker, Suzanne</creatorcontrib><title>Imaging Peptidoglycan Biosynthesis in Bacillus subtilis with Fluorescent Antibiotics</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The peptidoglycan (PG) layers surrounding bacterial cells play an important role in determining cell shape. The machinery controlling when and where new PG is made is not understood, but is proposed to involve interactions between bacterial actin homologs such as Mbl, which forms helical cables within cells, and extracellular multiprotein complexes that include penicillin-binding proteins. It has been suggested that labeled antibiotics that bind to PG precursors may be useful for imaging PG to help determine the genes that control the biosynthesis of this polymer. Here, we compare the staining patterns observed in Bacillus subtilis using fluorescent derivatives of two PG-binding antibiotics, vancomycin and ramoplanin. The staining patterns for both probes exhibit a strong dependence on probe concentration, suggesting antibiotic-induced perturbations in PG synthesis. Ramoplanin probes may be better imaging agents than vancomycin probes because they yield clear staining patterns at concentrations well below their minimum inhibitory concentrations. Under some conditions, both ramoplanin and vancomycin probes produce helicoid staining patterns along the cylindrical walls of B. subtilis cells. This sidewall staining is observed in the absence of the cytoskeletal protein Mbl. Although Mbl plays an important role in cell shape determination, our data indicate that other proteins control the spatial localization of the biosynthetic complexes responsible for new PG synthesis along the walls of B. subtilis cells.</description><subject>Actins</subject><subject>Actins - genetics</subject><subject>Actins - metabolism</subject><subject>Antibiotics</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - metabolism</subject><subject>Bacteria</subject><subject>Bacterial proteins</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Cells</subject><subject>Chemical synthesis</subject><subject>Depsipeptides - chemistry</subject><subject>Depsipeptides - metabolism</subject><subject>Depsipeptides - pharmacology</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Imaging</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Microbial sensitivity tests</subject><subject>Molecular Structure</subject><subject>Peptidoglycan - biosynthesis</subject><subject>Polymers</subject><subject>Probes</subject><subject>Stem cells</subject><subject>Vancomycin - chemistry</subject><subject>Vancomycin - metabolism</subject><subject>Vancomycin - pharmacology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkk1vEzEQhi0EoqFw5gRacUDisO34Y-31BSlUlFaKBIdytrwbb-LIsYPtLeTf41WiBiohTpbHz7wz83oQeo3hAoOglzuv0wVwgJZIDPQJmmGQuOZMwlM0AyCibhlhZ-hFShsAkE0Lz9EZ5i0lwOkM3d1u9cr6VfXN7LJdhpXb99pXn2xIe5_XJtlU2XLXvXVuTFUau2xdCf60eV1duzFEk3rjczX32XY2ZNunl-jZoF0yr47nOfp-_fnu6qZefP1yezVf1H3DWa5bKrgRVLYDtJwZbbpeD1q23VAimjJaBltywjtCxBJTQjTBBvOuBywG3WF6jj4edHdjtzXLqY2ondpFu9Vxr4K26u8Xb9dqFe4VbhjDXBaBDweB9aO0m_lCTTGgRFCBxf1U7P2xWAw_RpOy2toyuXPamzAmxVveUN6I_4JYUs4l0AK-ewRuwhh9cUwRwAwkZaRAlweojyGlaIaHPjGoaQfUtAPqtAMl4-2frpz446cXoDoCU-ZJjioiFZ4kTsb8E1HD6Fw2v3Jh3xzYTcohPsAUgElWyN-_uc95</recordid><startdate>20060718</startdate><enddate>20060718</enddate><creator>Tiyanont, Kittichoat</creator><creator>Doan, Thierry</creator><creator>Lazarus, Michael B.</creator><creator>Fang, Xiao</creator><creator>Rudner, David Z.</creator><creator>Walker, Suzanne</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5909-4289</orcidid></search><sort><creationdate>20060718</creationdate><title>Imaging Peptidoglycan Biosynthesis in Bacillus subtilis with Fluorescent Antibiotics</title><author>Tiyanont, Kittichoat ; Doan, Thierry ; Lazarus, Michael B. ; Fang, Xiao ; Rudner, David Z. ; Walker, Suzanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-8376e7398f0864eaebcafa98bf8f0a343060d626b227d1322a21e16bc017fab13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Actins</topic><topic>Actins - genetics</topic><topic>Actins - metabolism</topic><topic>Antibiotics</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - metabolism</topic><topic>Bacteria</topic><topic>Bacterial proteins</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Cells</topic><topic>Chemical synthesis</topic><topic>Depsipeptides - chemistry</topic><topic>Depsipeptides - metabolism</topic><topic>Depsipeptides - pharmacology</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Imaging</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Microbial sensitivity tests</topic><topic>Molecular Structure</topic><topic>Peptidoglycan - biosynthesis</topic><topic>Polymers</topic><topic>Probes</topic><topic>Stem cells</topic><topic>Vancomycin - chemistry</topic><topic>Vancomycin - metabolism</topic><topic>Vancomycin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiyanont, Kittichoat</creatorcontrib><creatorcontrib>Doan, Thierry</creatorcontrib><creatorcontrib>Lazarus, Michael B.</creatorcontrib><creatorcontrib>Fang, Xiao</creatorcontrib><creatorcontrib>Rudner, David Z.</creatorcontrib><creatorcontrib>Walker, Suzanne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiyanont, Kittichoat</au><au>Doan, Thierry</au><au>Lazarus, Michael B.</au><au>Fang, Xiao</au><au>Rudner, David Z.</au><au>Walker, Suzanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging Peptidoglycan Biosynthesis in Bacillus subtilis with Fluorescent Antibiotics</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-07-18</date><risdate>2006</risdate><volume>103</volume><issue>29</issue><spage>11033</spage><epage>11038</epage><pages>11033-11038</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The peptidoglycan (PG) layers surrounding bacterial cells play an important role in determining cell shape. The machinery controlling when and where new PG is made is not understood, but is proposed to involve interactions between bacterial actin homologs such as Mbl, which forms helical cables within cells, and extracellular multiprotein complexes that include penicillin-binding proteins. It has been suggested that labeled antibiotics that bind to PG precursors may be useful for imaging PG to help determine the genes that control the biosynthesis of this polymer. Here, we compare the staining patterns observed in Bacillus subtilis using fluorescent derivatives of two PG-binding antibiotics, vancomycin and ramoplanin. The staining patterns for both probes exhibit a strong dependence on probe concentration, suggesting antibiotic-induced perturbations in PG synthesis. Ramoplanin probes may be better imaging agents than vancomycin probes because they yield clear staining patterns at concentrations well below their minimum inhibitory concentrations. Under some conditions, both ramoplanin and vancomycin probes produce helicoid staining patterns along the cylindrical walls of B. subtilis cells. This sidewall staining is observed in the absence of the cytoskeletal protein Mbl. Although Mbl plays an important role in cell shape determination, our data indicate that other proteins control the spatial localization of the biosynthetic complexes responsible for new PG synthesis along the walls of B. subtilis cells.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16832063</pmid><doi>10.1073/pnas.0600829103</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5909-4289</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2006-07, Vol.103 (29), p.11033-11038
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1544169
source PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection
subjects Actins
Actins - genetics
Actins - metabolism
Antibiotics
Bacillus subtilis
Bacillus subtilis - metabolism
Bacteria
Bacterial proteins
Biological Sciences
Biosynthesis
Cells
Chemical synthesis
Depsipeptides - chemistry
Depsipeptides - metabolism
Depsipeptides - pharmacology
Fluorescent Dyes - chemistry
Imaging
Life Sciences
Lipids
Microbial sensitivity tests
Molecular Structure
Peptidoglycan - biosynthesis
Polymers
Probes
Stem cells
Vancomycin - chemistry
Vancomycin - metabolism
Vancomycin - pharmacology
title Imaging Peptidoglycan Biosynthesis in Bacillus subtilis with Fluorescent Antibiotics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20Peptidoglycan%20Biosynthesis%20in%20Bacillus%20subtilis%20with%20Fluorescent%20Antibiotics&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Tiyanont,%20Kittichoat&rft.date=2006-07-18&rft.volume=103&rft.issue=29&rft.spage=11033&rft.epage=11038&rft.pages=11033-11038&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0600829103&rft_dat=%3Cjstor_pubme%3E30049403%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c564t-8376e7398f0864eaebcafa98bf8f0a343060d626b227d1322a21e16bc017fab13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201409342&rft_id=info:pmid/16832063&rft_jstor_id=30049403&rfr_iscdi=true