Loading…
Imaging Peptidoglycan Biosynthesis in Bacillus subtilis with Fluorescent Antibiotics
The peptidoglycan (PG) layers surrounding bacterial cells play an important role in determining cell shape. The machinery controlling when and where new PG is made is not understood, but is proposed to involve interactions between bacterial actin homologs such as Mbl, which forms helical cables with...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2006-07, Vol.103 (29), p.11033-11038 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c564t-8376e7398f0864eaebcafa98bf8f0a343060d626b227d1322a21e16bc017fab13 |
---|---|
cites | cdi_FETCH-LOGICAL-c564t-8376e7398f0864eaebcafa98bf8f0a343060d626b227d1322a21e16bc017fab13 |
container_end_page | 11038 |
container_issue | 29 |
container_start_page | 11033 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 103 |
creator | Tiyanont, Kittichoat Doan, Thierry Lazarus, Michael B. Fang, Xiao Rudner, David Z. Walker, Suzanne |
description | The peptidoglycan (PG) layers surrounding bacterial cells play an important role in determining cell shape. The machinery controlling when and where new PG is made is not understood, but is proposed to involve interactions between bacterial actin homologs such as Mbl, which forms helical cables within cells, and extracellular multiprotein complexes that include penicillin-binding proteins. It has been suggested that labeled antibiotics that bind to PG precursors may be useful for imaging PG to help determine the genes that control the biosynthesis of this polymer. Here, we compare the staining patterns observed in Bacillus subtilis using fluorescent derivatives of two PG-binding antibiotics, vancomycin and ramoplanin. The staining patterns for both probes exhibit a strong dependence on probe concentration, suggesting antibiotic-induced perturbations in PG synthesis. Ramoplanin probes may be better imaging agents than vancomycin probes because they yield clear staining patterns at concentrations well below their minimum inhibitory concentrations. Under some conditions, both ramoplanin and vancomycin probes produce helicoid staining patterns along the cylindrical walls of B. subtilis cells. This sidewall staining is observed in the absence of the cytoskeletal protein Mbl. Although Mbl plays an important role in cell shape determination, our data indicate that other proteins control the spatial localization of the biosynthetic complexes responsible for new PG synthesis along the walls of B. subtilis cells. |
doi_str_mv | 10.1073/pnas.0600829103 |
format | article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1544169</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>30049403</jstor_id><sourcerecordid>30049403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c564t-8376e7398f0864eaebcafa98bf8f0a343060d626b227d1322a21e16bc017fab13</originalsourceid><addsrcrecordid>eNqFkk1vEzEQhi0EoqFw5gRacUDisO34Y-31BSlUlFaKBIdytrwbb-LIsYPtLeTf41WiBiohTpbHz7wz83oQeo3hAoOglzuv0wVwgJZIDPQJmmGQuOZMwlM0AyCibhlhZ-hFShsAkE0Lz9EZ5i0lwOkM3d1u9cr6VfXN7LJdhpXb99pXn2xIe5_XJtlU2XLXvXVuTFUau2xdCf60eV1duzFEk3rjczX32XY2ZNunl-jZoF0yr47nOfp-_fnu6qZefP1yezVf1H3DWa5bKrgRVLYDtJwZbbpeD1q23VAimjJaBltywjtCxBJTQjTBBvOuBywG3WF6jj4edHdjtzXLqY2ondpFu9Vxr4K26u8Xb9dqFe4VbhjDXBaBDweB9aO0m_lCTTGgRFCBxf1U7P2xWAw_RpOy2toyuXPamzAmxVveUN6I_4JYUs4l0AK-ewRuwhh9cUwRwAwkZaRAlweojyGlaIaHPjGoaQfUtAPqtAMl4-2frpz446cXoDoCU-ZJjioiFZ4kTsb8E1HD6Fw2v3Jh3xzYTcohPsAUgElWyN-_uc95</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201409342</pqid></control><display><type>article</type><title>Imaging Peptidoglycan Biosynthesis in Bacillus subtilis with Fluorescent Antibiotics</title><source>PubMed (Medline)</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Tiyanont, Kittichoat ; Doan, Thierry ; Lazarus, Michael B. ; Fang, Xiao ; Rudner, David Z. ; Walker, Suzanne</creator><creatorcontrib>Tiyanont, Kittichoat ; Doan, Thierry ; Lazarus, Michael B. ; Fang, Xiao ; Rudner, David Z. ; Walker, Suzanne</creatorcontrib><description>The peptidoglycan (PG) layers surrounding bacterial cells play an important role in determining cell shape. The machinery controlling when and where new PG is made is not understood, but is proposed to involve interactions between bacterial actin homologs such as Mbl, which forms helical cables within cells, and extracellular multiprotein complexes that include penicillin-binding proteins. It has been suggested that labeled antibiotics that bind to PG precursors may be useful for imaging PG to help determine the genes that control the biosynthesis of this polymer. Here, we compare the staining patterns observed in Bacillus subtilis using fluorescent derivatives of two PG-binding antibiotics, vancomycin and ramoplanin. The staining patterns for both probes exhibit a strong dependence on probe concentration, suggesting antibiotic-induced perturbations in PG synthesis. Ramoplanin probes may be better imaging agents than vancomycin probes because they yield clear staining patterns at concentrations well below their minimum inhibitory concentrations. Under some conditions, both ramoplanin and vancomycin probes produce helicoid staining patterns along the cylindrical walls of B. subtilis cells. This sidewall staining is observed in the absence of the cytoskeletal protein Mbl. Although Mbl plays an important role in cell shape determination, our data indicate that other proteins control the spatial localization of the biosynthetic complexes responsible for new PG synthesis along the walls of B. subtilis cells.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0600829103</identifier><identifier>PMID: 16832063</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Actins ; Actins - genetics ; Actins - metabolism ; Antibiotics ; Bacillus subtilis ; Bacillus subtilis - metabolism ; Bacteria ; Bacterial proteins ; Biological Sciences ; Biosynthesis ; Cells ; Chemical synthesis ; Depsipeptides - chemistry ; Depsipeptides - metabolism ; Depsipeptides - pharmacology ; Fluorescent Dyes - chemistry ; Imaging ; Life Sciences ; Lipids ; Microbial sensitivity tests ; Molecular Structure ; Peptidoglycan - biosynthesis ; Polymers ; Probes ; Stem cells ; Vancomycin - chemistry ; Vancomycin - metabolism ; Vancomycin - pharmacology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2006-07, Vol.103 (29), p.11033-11038</ispartof><rights>Copyright 2006 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Jul 18, 2006</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2006 by The National Academy of Sciences of the USA 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c564t-8376e7398f0864eaebcafa98bf8f0a343060d626b227d1322a21e16bc017fab13</citedby><cites>FETCH-LOGICAL-c564t-8376e7398f0864eaebcafa98bf8f0a343060d626b227d1322a21e16bc017fab13</cites><orcidid>0000-0002-5909-4289</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/103/29.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/30049403$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/30049403$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16832063$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03273717$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tiyanont, Kittichoat</creatorcontrib><creatorcontrib>Doan, Thierry</creatorcontrib><creatorcontrib>Lazarus, Michael B.</creatorcontrib><creatorcontrib>Fang, Xiao</creatorcontrib><creatorcontrib>Rudner, David Z.</creatorcontrib><creatorcontrib>Walker, Suzanne</creatorcontrib><title>Imaging Peptidoglycan Biosynthesis in Bacillus subtilis with Fluorescent Antibiotics</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The peptidoglycan (PG) layers surrounding bacterial cells play an important role in determining cell shape. The machinery controlling when and where new PG is made is not understood, but is proposed to involve interactions between bacterial actin homologs such as Mbl, which forms helical cables within cells, and extracellular multiprotein complexes that include penicillin-binding proteins. It has been suggested that labeled antibiotics that bind to PG precursors may be useful for imaging PG to help determine the genes that control the biosynthesis of this polymer. Here, we compare the staining patterns observed in Bacillus subtilis using fluorescent derivatives of two PG-binding antibiotics, vancomycin and ramoplanin. The staining patterns for both probes exhibit a strong dependence on probe concentration, suggesting antibiotic-induced perturbations in PG synthesis. Ramoplanin probes may be better imaging agents than vancomycin probes because they yield clear staining patterns at concentrations well below their minimum inhibitory concentrations. Under some conditions, both ramoplanin and vancomycin probes produce helicoid staining patterns along the cylindrical walls of B. subtilis cells. This sidewall staining is observed in the absence of the cytoskeletal protein Mbl. Although Mbl plays an important role in cell shape determination, our data indicate that other proteins control the spatial localization of the biosynthetic complexes responsible for new PG synthesis along the walls of B. subtilis cells.</description><subject>Actins</subject><subject>Actins - genetics</subject><subject>Actins - metabolism</subject><subject>Antibiotics</subject><subject>Bacillus subtilis</subject><subject>Bacillus subtilis - metabolism</subject><subject>Bacteria</subject><subject>Bacterial proteins</subject><subject>Biological Sciences</subject><subject>Biosynthesis</subject><subject>Cells</subject><subject>Chemical synthesis</subject><subject>Depsipeptides - chemistry</subject><subject>Depsipeptides - metabolism</subject><subject>Depsipeptides - pharmacology</subject><subject>Fluorescent Dyes - chemistry</subject><subject>Imaging</subject><subject>Life Sciences</subject><subject>Lipids</subject><subject>Microbial sensitivity tests</subject><subject>Molecular Structure</subject><subject>Peptidoglycan - biosynthesis</subject><subject>Polymers</subject><subject>Probes</subject><subject>Stem cells</subject><subject>Vancomycin - chemistry</subject><subject>Vancomycin - metabolism</subject><subject>Vancomycin - pharmacology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkk1vEzEQhi0EoqFw5gRacUDisO34Y-31BSlUlFaKBIdytrwbb-LIsYPtLeTf41WiBiohTpbHz7wz83oQeo3hAoOglzuv0wVwgJZIDPQJmmGQuOZMwlM0AyCibhlhZ-hFShsAkE0Lz9EZ5i0lwOkM3d1u9cr6VfXN7LJdhpXb99pXn2xIe5_XJtlU2XLXvXVuTFUau2xdCf60eV1duzFEk3rjczX32XY2ZNunl-jZoF0yr47nOfp-_fnu6qZefP1yezVf1H3DWa5bKrgRVLYDtJwZbbpeD1q23VAimjJaBltywjtCxBJTQjTBBvOuBywG3WF6jj4edHdjtzXLqY2ondpFu9Vxr4K26u8Xb9dqFe4VbhjDXBaBDweB9aO0m_lCTTGgRFCBxf1U7P2xWAw_RpOy2toyuXPamzAmxVveUN6I_4JYUs4l0AK-ewRuwhh9cUwRwAwkZaRAlweojyGlaIaHPjGoaQfUtAPqtAMl4-2frpz446cXoDoCU-ZJjioiFZ4kTsb8E1HD6Fw2v3Jh3xzYTcohPsAUgElWyN-_uc95</recordid><startdate>20060718</startdate><enddate>20060718</enddate><creator>Tiyanont, Kittichoat</creator><creator>Doan, Thierry</creator><creator>Lazarus, Michael B.</creator><creator>Fang, Xiao</creator><creator>Rudner, David Z.</creator><creator>Walker, Suzanne</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7QO</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5909-4289</orcidid></search><sort><creationdate>20060718</creationdate><title>Imaging Peptidoglycan Biosynthesis in Bacillus subtilis with Fluorescent Antibiotics</title><author>Tiyanont, Kittichoat ; Doan, Thierry ; Lazarus, Michael B. ; Fang, Xiao ; Rudner, David Z. ; Walker, Suzanne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c564t-8376e7398f0864eaebcafa98bf8f0a343060d626b227d1322a21e16bc017fab13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Actins</topic><topic>Actins - genetics</topic><topic>Actins - metabolism</topic><topic>Antibiotics</topic><topic>Bacillus subtilis</topic><topic>Bacillus subtilis - metabolism</topic><topic>Bacteria</topic><topic>Bacterial proteins</topic><topic>Biological Sciences</topic><topic>Biosynthesis</topic><topic>Cells</topic><topic>Chemical synthesis</topic><topic>Depsipeptides - chemistry</topic><topic>Depsipeptides - metabolism</topic><topic>Depsipeptides - pharmacology</topic><topic>Fluorescent Dyes - chemistry</topic><topic>Imaging</topic><topic>Life Sciences</topic><topic>Lipids</topic><topic>Microbial sensitivity tests</topic><topic>Molecular Structure</topic><topic>Peptidoglycan - biosynthesis</topic><topic>Polymers</topic><topic>Probes</topic><topic>Stem cells</topic><topic>Vancomycin - chemistry</topic><topic>Vancomycin - metabolism</topic><topic>Vancomycin - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tiyanont, Kittichoat</creatorcontrib><creatorcontrib>Doan, Thierry</creatorcontrib><creatorcontrib>Lazarus, Michael B.</creatorcontrib><creatorcontrib>Fang, Xiao</creatorcontrib><creatorcontrib>Rudner, David Z.</creatorcontrib><creatorcontrib>Walker, Suzanne</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tiyanont, Kittichoat</au><au>Doan, Thierry</au><au>Lazarus, Michael B.</au><au>Fang, Xiao</au><au>Rudner, David Z.</au><au>Walker, Suzanne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging Peptidoglycan Biosynthesis in Bacillus subtilis with Fluorescent Antibiotics</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2006-07-18</date><risdate>2006</risdate><volume>103</volume><issue>29</issue><spage>11033</spage><epage>11038</epage><pages>11033-11038</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The peptidoglycan (PG) layers surrounding bacterial cells play an important role in determining cell shape. The machinery controlling when and where new PG is made is not understood, but is proposed to involve interactions between bacterial actin homologs such as Mbl, which forms helical cables within cells, and extracellular multiprotein complexes that include penicillin-binding proteins. It has been suggested that labeled antibiotics that bind to PG precursors may be useful for imaging PG to help determine the genes that control the biosynthesis of this polymer. Here, we compare the staining patterns observed in Bacillus subtilis using fluorescent derivatives of two PG-binding antibiotics, vancomycin and ramoplanin. The staining patterns for both probes exhibit a strong dependence on probe concentration, suggesting antibiotic-induced perturbations in PG synthesis. Ramoplanin probes may be better imaging agents than vancomycin probes because they yield clear staining patterns at concentrations well below their minimum inhibitory concentrations. Under some conditions, both ramoplanin and vancomycin probes produce helicoid staining patterns along the cylindrical walls of B. subtilis cells. This sidewall staining is observed in the absence of the cytoskeletal protein Mbl. Although Mbl plays an important role in cell shape determination, our data indicate that other proteins control the spatial localization of the biosynthetic complexes responsible for new PG synthesis along the walls of B. subtilis cells.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16832063</pmid><doi>10.1073/pnas.0600829103</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-5909-4289</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2006-07, Vol.103 (29), p.11033-11038 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1544169 |
source | PubMed (Medline); JSTOR Archival Journals and Primary Sources Collection |
subjects | Actins Actins - genetics Actins - metabolism Antibiotics Bacillus subtilis Bacillus subtilis - metabolism Bacteria Bacterial proteins Biological Sciences Biosynthesis Cells Chemical synthesis Depsipeptides - chemistry Depsipeptides - metabolism Depsipeptides - pharmacology Fluorescent Dyes - chemistry Imaging Life Sciences Lipids Microbial sensitivity tests Molecular Structure Peptidoglycan - biosynthesis Polymers Probes Stem cells Vancomycin - chemistry Vancomycin - metabolism Vancomycin - pharmacology |
title | Imaging Peptidoglycan Biosynthesis in Bacillus subtilis with Fluorescent Antibiotics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20Peptidoglycan%20Biosynthesis%20in%20Bacillus%20subtilis%20with%20Fluorescent%20Antibiotics&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Tiyanont,%20Kittichoat&rft.date=2006-07-18&rft.volume=103&rft.issue=29&rft.spage=11033&rft.epage=11038&rft.pages=11033-11038&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0600829103&rft_dat=%3Cjstor_pubme%3E30049403%3C/jstor_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c564t-8376e7398f0864eaebcafa98bf8f0a343060d626b227d1322a21e16bc017fab13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=201409342&rft_id=info:pmid/16832063&rft_jstor_id=30049403&rfr_iscdi=true |