Loading…
Cortical Inhibition Modified by Embryonic Neural Precursors Grafted into the Postnatal Brain
Embryonic medial ganglionic eminence (MGE) cells transplanted into the adult brain can disperse, migrate, and differentiate to neurons expressing GABA, the primary inhibitory neurotransmitter. It has been hypothesized that grafted MGE precursors could have important therapeutic applications increasi...
Saved in:
Published in: | The Journal of neuroscience 2006-07, Vol.26 (28), p.7380-7389 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c528t-bf4beb044cc069ae9d269ea814a45eee4f7ca9a71d79c55a870a0aa90f8004f93 |
---|---|
cites | cdi_FETCH-LOGICAL-c528t-bf4beb044cc069ae9d269ea814a45eee4f7ca9a71d79c55a870a0aa90f8004f93 |
container_end_page | 7389 |
container_issue | 28 |
container_start_page | 7380 |
container_title | The Journal of neuroscience |
container_volume | 26 |
creator | Alvarez-Dolado, Manuel Calcagnotto, Maria Elisa Karkar, Kameel M Southwell, Derek G Jones-Davis, Dorothy M Estrada, Rosanne C Rubenstein, John L. R Alvarez-Buylla, Arturo Baraban, Scott C |
description | Embryonic medial ganglionic eminence (MGE) cells transplanted into the adult brain can disperse, migrate, and differentiate to neurons expressing GABA, the primary inhibitory neurotransmitter. It has been hypothesized that grafted MGE precursors could have important therapeutic applications increasing local inhibition, but there is no evidence that MGE cells can modify neural circuits when grafted into the postnatal brain. Here we demonstrate that MGE cells grafted into one location of the neonatal rodent brain migrate widely into cortex. Grafted MGE-derived cells differentiate into mature cortical interneurons; the majority of these new interneurons express GABA. Based on their morphology and expression of somatostatin, neuropeptide Y, parvalbumin, or calretinin, we infer that graft-derived cells integrate into local circuits and function as GABA-producing inhibitory cells. Whole-cell current-clamp recordings obtained from MGE-derived cells indicate firing properties typical of mature interneurons. Moreover, patch-clamp recordings of IPSCs on pyramidal neurons in the host brain, 30 and 60 d after transplantation, indicated a significant increase in GABA-mediated synaptic inhibition in regions containing transplanted MGE cells. In contrast, synaptic excitation is not altered in the host brain. Grafted MGE cells, therefore, can be used to modify neural circuits and selectively increase local inhibition. These findings could have important implications for reparative cell therapies for brain disorders. |
doi_str_mv | 10.1523/JNEUROSCI.1540-06.2006 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1550786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68637559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-bf4beb044cc069ae9d269ea814a45eee4f7ca9a71d79c55a870a0aa90f8004f93</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0Eokvbv1DlBKeUceLPCxKslrKotBW0NyTLcZzGKIlb22G1_x6vdlXg1NNoNM-8mtGD0BmGc0yr-v3Xq9Xd9-sfy3VuCZTAzisA9gIt8lSWFQH8Ei2g4lAywskRehPjLwDggPlrdISZqDkVdIF-Ln1IzuihWE-9a1xyfiq--dZ1zrZFsy1WYxO2fnKmuLJzyNxNsGYO0YdYXATdpYy5Kfki9ba48TFNOmXqU9BuOkGvOj1Ee3qox-ju8-p2-aW8vL5YLz9eloZWIpVNRxrbACHGAJPayrZi0mqBiSbUWks6brTUHLdcGkq14KBBawmdACCdrI_Rh33uw9yMtjV2SvlS9RDcqMNWee3U_5PJ9ere_1aYUuCC5YC3h4DgH2cbkxpdNHYY9GT9HBXLDKdUPgtiXjECEjLI9qAJPsZgu6drMKidQfVkUO0MKmBqZzAvnv37y9-1g7IMvNsDvbvvNy5YFUc9DBnHarPZVDlHKF4LqP8ASHWoPQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17264090</pqid></control><display><type>article</type><title>Cortical Inhibition Modified by Embryonic Neural Precursors Grafted into the Postnatal Brain</title><source>PubMed Central</source><creator>Alvarez-Dolado, Manuel ; Calcagnotto, Maria Elisa ; Karkar, Kameel M ; Southwell, Derek G ; Jones-Davis, Dorothy M ; Estrada, Rosanne C ; Rubenstein, John L. R ; Alvarez-Buylla, Arturo ; Baraban, Scott C</creator><creatorcontrib>Alvarez-Dolado, Manuel ; Calcagnotto, Maria Elisa ; Karkar, Kameel M ; Southwell, Derek G ; Jones-Davis, Dorothy M ; Estrada, Rosanne C ; Rubenstein, John L. R ; Alvarez-Buylla, Arturo ; Baraban, Scott C</creatorcontrib><description>Embryonic medial ganglionic eminence (MGE) cells transplanted into the adult brain can disperse, migrate, and differentiate to neurons expressing GABA, the primary inhibitory neurotransmitter. It has been hypothesized that grafted MGE precursors could have important therapeutic applications increasing local inhibition, but there is no evidence that MGE cells can modify neural circuits when grafted into the postnatal brain. Here we demonstrate that MGE cells grafted into one location of the neonatal rodent brain migrate widely into cortex. Grafted MGE-derived cells differentiate into mature cortical interneurons; the majority of these new interneurons express GABA. Based on their morphology and expression of somatostatin, neuropeptide Y, parvalbumin, or calretinin, we infer that graft-derived cells integrate into local circuits and function as GABA-producing inhibitory cells. Whole-cell current-clamp recordings obtained from MGE-derived cells indicate firing properties typical of mature interneurons. Moreover, patch-clamp recordings of IPSCs on pyramidal neurons in the host brain, 30 and 60 d after transplantation, indicated a significant increase in GABA-mediated synaptic inhibition in regions containing transplanted MGE cells. In contrast, synaptic excitation is not altered in the host brain. Grafted MGE cells, therefore, can be used to modify neural circuits and selectively increase local inhibition. These findings could have important implications for reparative cell therapies for brain disorders.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.1540-06.2006</identifier><identifier>PMID: 16837585</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Action Potentials ; Animals ; Animals, Newborn ; Brain - cytology ; Brain - physiology ; Cell Differentiation ; Cell Movement ; Cerebral Cortex - cytology ; Cerebral Cortex - physiology ; Embryo, Mammalian - cytology ; gamma-Aminobutyric Acid - physiology ; Green Fluorescent Proteins - biosynthesis ; In Vitro Techniques ; Interneurons - physiology ; Kinetics ; Median Eminence - cytology ; Mice ; Mice, Transgenic ; Neural Inhibition ; Neurons - cytology ; Neurons - physiology ; Patch-Clamp Techniques ; Phenotype ; Stem Cell Transplantation ; Synapses - physiology</subject><ispartof>The Journal of neuroscience, 2006-07, Vol.26 (28), p.7380-7389</ispartof><rights>Copyright © 2006 Society for Neuroscience 0270-6474/06/267380-10$15.00/0 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-bf4beb044cc069ae9d269ea814a45eee4f7ca9a71d79c55a870a0aa90f8004f93</citedby><cites>FETCH-LOGICAL-c528t-bf4beb044cc069ae9d269ea814a45eee4f7ca9a71d79c55a870a0aa90f8004f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1550786/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1550786/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16837585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alvarez-Dolado, Manuel</creatorcontrib><creatorcontrib>Calcagnotto, Maria Elisa</creatorcontrib><creatorcontrib>Karkar, Kameel M</creatorcontrib><creatorcontrib>Southwell, Derek G</creatorcontrib><creatorcontrib>Jones-Davis, Dorothy M</creatorcontrib><creatorcontrib>Estrada, Rosanne C</creatorcontrib><creatorcontrib>Rubenstein, John L. R</creatorcontrib><creatorcontrib>Alvarez-Buylla, Arturo</creatorcontrib><creatorcontrib>Baraban, Scott C</creatorcontrib><title>Cortical Inhibition Modified by Embryonic Neural Precursors Grafted into the Postnatal Brain</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Embryonic medial ganglionic eminence (MGE) cells transplanted into the adult brain can disperse, migrate, and differentiate to neurons expressing GABA, the primary inhibitory neurotransmitter. It has been hypothesized that grafted MGE precursors could have important therapeutic applications increasing local inhibition, but there is no evidence that MGE cells can modify neural circuits when grafted into the postnatal brain. Here we demonstrate that MGE cells grafted into one location of the neonatal rodent brain migrate widely into cortex. Grafted MGE-derived cells differentiate into mature cortical interneurons; the majority of these new interneurons express GABA. Based on their morphology and expression of somatostatin, neuropeptide Y, parvalbumin, or calretinin, we infer that graft-derived cells integrate into local circuits and function as GABA-producing inhibitory cells. Whole-cell current-clamp recordings obtained from MGE-derived cells indicate firing properties typical of mature interneurons. Moreover, patch-clamp recordings of IPSCs on pyramidal neurons in the host brain, 30 and 60 d after transplantation, indicated a significant increase in GABA-mediated synaptic inhibition in regions containing transplanted MGE cells. In contrast, synaptic excitation is not altered in the host brain. Grafted MGE cells, therefore, can be used to modify neural circuits and selectively increase local inhibition. These findings could have important implications for reparative cell therapies for brain disorders.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Brain - cytology</subject><subject>Brain - physiology</subject><subject>Cell Differentiation</subject><subject>Cell Movement</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - physiology</subject><subject>Embryo, Mammalian - cytology</subject><subject>gamma-Aminobutyric Acid - physiology</subject><subject>Green Fluorescent Proteins - biosynthesis</subject><subject>In Vitro Techniques</subject><subject>Interneurons - physiology</subject><subject>Kinetics</subject><subject>Median Eminence - cytology</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neural Inhibition</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Patch-Clamp Techniques</subject><subject>Phenotype</subject><subject>Stem Cell Transplantation</subject><subject>Synapses - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0Eokvbv1DlBKeUceLPCxKslrKotBW0NyTLcZzGKIlb22G1_x6vdlXg1NNoNM-8mtGD0BmGc0yr-v3Xq9Xd9-sfy3VuCZTAzisA9gIt8lSWFQH8Ei2g4lAywskRehPjLwDggPlrdISZqDkVdIF-Ln1IzuihWE-9a1xyfiq--dZ1zrZFsy1WYxO2fnKmuLJzyNxNsGYO0YdYXATdpYy5Kfki9ba48TFNOmXqU9BuOkGvOj1Ee3qox-ju8-p2-aW8vL5YLz9eloZWIpVNRxrbACHGAJPayrZi0mqBiSbUWks6brTUHLdcGkq14KBBawmdACCdrI_Rh33uw9yMtjV2SvlS9RDcqMNWee3U_5PJ9ere_1aYUuCC5YC3h4DgH2cbkxpdNHYY9GT9HBXLDKdUPgtiXjECEjLI9qAJPsZgu6drMKidQfVkUO0MKmBqZzAvnv37y9-1g7IMvNsDvbvvNy5YFUc9DBnHarPZVDlHKF4LqP8ASHWoPQ</recordid><startdate>20060712</startdate><enddate>20060712</enddate><creator>Alvarez-Dolado, Manuel</creator><creator>Calcagnotto, Maria Elisa</creator><creator>Karkar, Kameel M</creator><creator>Southwell, Derek G</creator><creator>Jones-Davis, Dorothy M</creator><creator>Estrada, Rosanne C</creator><creator>Rubenstein, John L. R</creator><creator>Alvarez-Buylla, Arturo</creator><creator>Baraban, Scott C</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060712</creationdate><title>Cortical Inhibition Modified by Embryonic Neural Precursors Grafted into the Postnatal Brain</title><author>Alvarez-Dolado, Manuel ; Calcagnotto, Maria Elisa ; Karkar, Kameel M ; Southwell, Derek G ; Jones-Davis, Dorothy M ; Estrada, Rosanne C ; Rubenstein, John L. R ; Alvarez-Buylla, Arturo ; Baraban, Scott C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-bf4beb044cc069ae9d269ea814a45eee4f7ca9a71d79c55a870a0aa90f8004f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Brain - cytology</topic><topic>Brain - physiology</topic><topic>Cell Differentiation</topic><topic>Cell Movement</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - physiology</topic><topic>Embryo, Mammalian - cytology</topic><topic>gamma-Aminobutyric Acid - physiology</topic><topic>Green Fluorescent Proteins - biosynthesis</topic><topic>In Vitro Techniques</topic><topic>Interneurons - physiology</topic><topic>Kinetics</topic><topic>Median Eminence - cytology</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neural Inhibition</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Patch-Clamp Techniques</topic><topic>Phenotype</topic><topic>Stem Cell Transplantation</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alvarez-Dolado, Manuel</creatorcontrib><creatorcontrib>Calcagnotto, Maria Elisa</creatorcontrib><creatorcontrib>Karkar, Kameel M</creatorcontrib><creatorcontrib>Southwell, Derek G</creatorcontrib><creatorcontrib>Jones-Davis, Dorothy M</creatorcontrib><creatorcontrib>Estrada, Rosanne C</creatorcontrib><creatorcontrib>Rubenstein, John L. R</creatorcontrib><creatorcontrib>Alvarez-Buylla, Arturo</creatorcontrib><creatorcontrib>Baraban, Scott C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alvarez-Dolado, Manuel</au><au>Calcagnotto, Maria Elisa</au><au>Karkar, Kameel M</au><au>Southwell, Derek G</au><au>Jones-Davis, Dorothy M</au><au>Estrada, Rosanne C</au><au>Rubenstein, John L. R</au><au>Alvarez-Buylla, Arturo</au><au>Baraban, Scott C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cortical Inhibition Modified by Embryonic Neural Precursors Grafted into the Postnatal Brain</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2006-07-12</date><risdate>2006</risdate><volume>26</volume><issue>28</issue><spage>7380</spage><epage>7389</epage><pages>7380-7389</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Embryonic medial ganglionic eminence (MGE) cells transplanted into the adult brain can disperse, migrate, and differentiate to neurons expressing GABA, the primary inhibitory neurotransmitter. It has been hypothesized that grafted MGE precursors could have important therapeutic applications increasing local inhibition, but there is no evidence that MGE cells can modify neural circuits when grafted into the postnatal brain. Here we demonstrate that MGE cells grafted into one location of the neonatal rodent brain migrate widely into cortex. Grafted MGE-derived cells differentiate into mature cortical interneurons; the majority of these new interneurons express GABA. Based on their morphology and expression of somatostatin, neuropeptide Y, parvalbumin, or calretinin, we infer that graft-derived cells integrate into local circuits and function as GABA-producing inhibitory cells. Whole-cell current-clamp recordings obtained from MGE-derived cells indicate firing properties typical of mature interneurons. Moreover, patch-clamp recordings of IPSCs on pyramidal neurons in the host brain, 30 and 60 d after transplantation, indicated a significant increase in GABA-mediated synaptic inhibition in regions containing transplanted MGE cells. In contrast, synaptic excitation is not altered in the host brain. Grafted MGE cells, therefore, can be used to modify neural circuits and selectively increase local inhibition. These findings could have important implications for reparative cell therapies for brain disorders.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>16837585</pmid><doi>10.1523/JNEUROSCI.1540-06.2006</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0270-6474 |
ispartof | The Journal of neuroscience, 2006-07, Vol.26 (28), p.7380-7389 |
issn | 0270-6474 1529-2401 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1550786 |
source | PubMed Central |
subjects | Action Potentials Animals Animals, Newborn Brain - cytology Brain - physiology Cell Differentiation Cell Movement Cerebral Cortex - cytology Cerebral Cortex - physiology Embryo, Mammalian - cytology gamma-Aminobutyric Acid - physiology Green Fluorescent Proteins - biosynthesis In Vitro Techniques Interneurons - physiology Kinetics Median Eminence - cytology Mice Mice, Transgenic Neural Inhibition Neurons - cytology Neurons - physiology Patch-Clamp Techniques Phenotype Stem Cell Transplantation Synapses - physiology |
title | Cortical Inhibition Modified by Embryonic Neural Precursors Grafted into the Postnatal Brain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A05%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cortical%20Inhibition%20Modified%20by%20Embryonic%20Neural%20Precursors%20Grafted%20into%20the%20Postnatal%20Brain&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Alvarez-Dolado,%20Manuel&rft.date=2006-07-12&rft.volume=26&rft.issue=28&rft.spage=7380&rft.epage=7389&rft.pages=7380-7389&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.1540-06.2006&rft_dat=%3Cproquest_pubme%3E68637559%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-bf4beb044cc069ae9d269ea814a45eee4f7ca9a71d79c55a870a0aa90f8004f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17264090&rft_id=info:pmid/16837585&rfr_iscdi=true |