Loading…

Cortical Inhibition Modified by Embryonic Neural Precursors Grafted into the Postnatal Brain

Embryonic medial ganglionic eminence (MGE) cells transplanted into the adult brain can disperse, migrate, and differentiate to neurons expressing GABA, the primary inhibitory neurotransmitter. It has been hypothesized that grafted MGE precursors could have important therapeutic applications increasi...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of neuroscience 2006-07, Vol.26 (28), p.7380-7389
Main Authors: Alvarez-Dolado, Manuel, Calcagnotto, Maria Elisa, Karkar, Kameel M, Southwell, Derek G, Jones-Davis, Dorothy M, Estrada, Rosanne C, Rubenstein, John L. R, Alvarez-Buylla, Arturo, Baraban, Scott C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c528t-bf4beb044cc069ae9d269ea814a45eee4f7ca9a71d79c55a870a0aa90f8004f93
cites cdi_FETCH-LOGICAL-c528t-bf4beb044cc069ae9d269ea814a45eee4f7ca9a71d79c55a870a0aa90f8004f93
container_end_page 7389
container_issue 28
container_start_page 7380
container_title The Journal of neuroscience
container_volume 26
creator Alvarez-Dolado, Manuel
Calcagnotto, Maria Elisa
Karkar, Kameel M
Southwell, Derek G
Jones-Davis, Dorothy M
Estrada, Rosanne C
Rubenstein, John L. R
Alvarez-Buylla, Arturo
Baraban, Scott C
description Embryonic medial ganglionic eminence (MGE) cells transplanted into the adult brain can disperse, migrate, and differentiate to neurons expressing GABA, the primary inhibitory neurotransmitter. It has been hypothesized that grafted MGE precursors could have important therapeutic applications increasing local inhibition, but there is no evidence that MGE cells can modify neural circuits when grafted into the postnatal brain. Here we demonstrate that MGE cells grafted into one location of the neonatal rodent brain migrate widely into cortex. Grafted MGE-derived cells differentiate into mature cortical interneurons; the majority of these new interneurons express GABA. Based on their morphology and expression of somatostatin, neuropeptide Y, parvalbumin, or calretinin, we infer that graft-derived cells integrate into local circuits and function as GABA-producing inhibitory cells. Whole-cell current-clamp recordings obtained from MGE-derived cells indicate firing properties typical of mature interneurons. Moreover, patch-clamp recordings of IPSCs on pyramidal neurons in the host brain, 30 and 60 d after transplantation, indicated a significant increase in GABA-mediated synaptic inhibition in regions containing transplanted MGE cells. In contrast, synaptic excitation is not altered in the host brain. Grafted MGE cells, therefore, can be used to modify neural circuits and selectively increase local inhibition. These findings could have important implications for reparative cell therapies for brain disorders.
doi_str_mv 10.1523/JNEUROSCI.1540-06.2006
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1550786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68637559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c528t-bf4beb044cc069ae9d269ea814a45eee4f7ca9a71d79c55a870a0aa90f8004f93</originalsourceid><addsrcrecordid>eNqFkU1v1DAQhi0Eokvbv1DlBKeUceLPCxKslrKotBW0NyTLcZzGKIlb22G1_x6vdlXg1NNoNM-8mtGD0BmGc0yr-v3Xq9Xd9-sfy3VuCZTAzisA9gIt8lSWFQH8Ei2g4lAywskRehPjLwDggPlrdISZqDkVdIF-Ln1IzuihWE-9a1xyfiq--dZ1zrZFsy1WYxO2fnKmuLJzyNxNsGYO0YdYXATdpYy5Kfki9ba48TFNOmXqU9BuOkGvOj1Ee3qox-ju8-p2-aW8vL5YLz9eloZWIpVNRxrbACHGAJPayrZi0mqBiSbUWks6brTUHLdcGkq14KBBawmdACCdrI_Rh33uw9yMtjV2SvlS9RDcqMNWee3U_5PJ9ere_1aYUuCC5YC3h4DgH2cbkxpdNHYY9GT9HBXLDKdUPgtiXjECEjLI9qAJPsZgu6drMKidQfVkUO0MKmBqZzAvnv37y9-1g7IMvNsDvbvvNy5YFUc9DBnHarPZVDlHKF4LqP8ASHWoPQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17264090</pqid></control><display><type>article</type><title>Cortical Inhibition Modified by Embryonic Neural Precursors Grafted into the Postnatal Brain</title><source>PubMed Central</source><creator>Alvarez-Dolado, Manuel ; Calcagnotto, Maria Elisa ; Karkar, Kameel M ; Southwell, Derek G ; Jones-Davis, Dorothy M ; Estrada, Rosanne C ; Rubenstein, John L. R ; Alvarez-Buylla, Arturo ; Baraban, Scott C</creator><creatorcontrib>Alvarez-Dolado, Manuel ; Calcagnotto, Maria Elisa ; Karkar, Kameel M ; Southwell, Derek G ; Jones-Davis, Dorothy M ; Estrada, Rosanne C ; Rubenstein, John L. R ; Alvarez-Buylla, Arturo ; Baraban, Scott C</creatorcontrib><description>Embryonic medial ganglionic eminence (MGE) cells transplanted into the adult brain can disperse, migrate, and differentiate to neurons expressing GABA, the primary inhibitory neurotransmitter. It has been hypothesized that grafted MGE precursors could have important therapeutic applications increasing local inhibition, but there is no evidence that MGE cells can modify neural circuits when grafted into the postnatal brain. Here we demonstrate that MGE cells grafted into one location of the neonatal rodent brain migrate widely into cortex. Grafted MGE-derived cells differentiate into mature cortical interneurons; the majority of these new interneurons express GABA. Based on their morphology and expression of somatostatin, neuropeptide Y, parvalbumin, or calretinin, we infer that graft-derived cells integrate into local circuits and function as GABA-producing inhibitory cells. Whole-cell current-clamp recordings obtained from MGE-derived cells indicate firing properties typical of mature interneurons. Moreover, patch-clamp recordings of IPSCs on pyramidal neurons in the host brain, 30 and 60 d after transplantation, indicated a significant increase in GABA-mediated synaptic inhibition in regions containing transplanted MGE cells. In contrast, synaptic excitation is not altered in the host brain. Grafted MGE cells, therefore, can be used to modify neural circuits and selectively increase local inhibition. These findings could have important implications for reparative cell therapies for brain disorders.</description><identifier>ISSN: 0270-6474</identifier><identifier>EISSN: 1529-2401</identifier><identifier>DOI: 10.1523/JNEUROSCI.1540-06.2006</identifier><identifier>PMID: 16837585</identifier><language>eng</language><publisher>United States: Soc Neuroscience</publisher><subject>Action Potentials ; Animals ; Animals, Newborn ; Brain - cytology ; Brain - physiology ; Cell Differentiation ; Cell Movement ; Cerebral Cortex - cytology ; Cerebral Cortex - physiology ; Embryo, Mammalian - cytology ; gamma-Aminobutyric Acid - physiology ; Green Fluorescent Proteins - biosynthesis ; In Vitro Techniques ; Interneurons - physiology ; Kinetics ; Median Eminence - cytology ; Mice ; Mice, Transgenic ; Neural Inhibition ; Neurons - cytology ; Neurons - physiology ; Patch-Clamp Techniques ; Phenotype ; Stem Cell Transplantation ; Synapses - physiology</subject><ispartof>The Journal of neuroscience, 2006-07, Vol.26 (28), p.7380-7389</ispartof><rights>Copyright © 2006 Society for Neuroscience 0270-6474/06/267380-10$15.00/0 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c528t-bf4beb044cc069ae9d269ea814a45eee4f7ca9a71d79c55a870a0aa90f8004f93</citedby><cites>FETCH-LOGICAL-c528t-bf4beb044cc069ae9d269ea814a45eee4f7ca9a71d79c55a870a0aa90f8004f93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1550786/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1550786/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16837585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alvarez-Dolado, Manuel</creatorcontrib><creatorcontrib>Calcagnotto, Maria Elisa</creatorcontrib><creatorcontrib>Karkar, Kameel M</creatorcontrib><creatorcontrib>Southwell, Derek G</creatorcontrib><creatorcontrib>Jones-Davis, Dorothy M</creatorcontrib><creatorcontrib>Estrada, Rosanne C</creatorcontrib><creatorcontrib>Rubenstein, John L. R</creatorcontrib><creatorcontrib>Alvarez-Buylla, Arturo</creatorcontrib><creatorcontrib>Baraban, Scott C</creatorcontrib><title>Cortical Inhibition Modified by Embryonic Neural Precursors Grafted into the Postnatal Brain</title><title>The Journal of neuroscience</title><addtitle>J Neurosci</addtitle><description>Embryonic medial ganglionic eminence (MGE) cells transplanted into the adult brain can disperse, migrate, and differentiate to neurons expressing GABA, the primary inhibitory neurotransmitter. It has been hypothesized that grafted MGE precursors could have important therapeutic applications increasing local inhibition, but there is no evidence that MGE cells can modify neural circuits when grafted into the postnatal brain. Here we demonstrate that MGE cells grafted into one location of the neonatal rodent brain migrate widely into cortex. Grafted MGE-derived cells differentiate into mature cortical interneurons; the majority of these new interneurons express GABA. Based on their morphology and expression of somatostatin, neuropeptide Y, parvalbumin, or calretinin, we infer that graft-derived cells integrate into local circuits and function as GABA-producing inhibitory cells. Whole-cell current-clamp recordings obtained from MGE-derived cells indicate firing properties typical of mature interneurons. Moreover, patch-clamp recordings of IPSCs on pyramidal neurons in the host brain, 30 and 60 d after transplantation, indicated a significant increase in GABA-mediated synaptic inhibition in regions containing transplanted MGE cells. In contrast, synaptic excitation is not altered in the host brain. Grafted MGE cells, therefore, can be used to modify neural circuits and selectively increase local inhibition. These findings could have important implications for reparative cell therapies for brain disorders.</description><subject>Action Potentials</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Brain - cytology</subject><subject>Brain - physiology</subject><subject>Cell Differentiation</subject><subject>Cell Movement</subject><subject>Cerebral Cortex - cytology</subject><subject>Cerebral Cortex - physiology</subject><subject>Embryo, Mammalian - cytology</subject><subject>gamma-Aminobutyric Acid - physiology</subject><subject>Green Fluorescent Proteins - biosynthesis</subject><subject>In Vitro Techniques</subject><subject>Interneurons - physiology</subject><subject>Kinetics</subject><subject>Median Eminence - cytology</subject><subject>Mice</subject><subject>Mice, Transgenic</subject><subject>Neural Inhibition</subject><subject>Neurons - cytology</subject><subject>Neurons - physiology</subject><subject>Patch-Clamp Techniques</subject><subject>Phenotype</subject><subject>Stem Cell Transplantation</subject><subject>Synapses - physiology</subject><issn>0270-6474</issn><issn>1529-2401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkU1v1DAQhi0Eokvbv1DlBKeUceLPCxKslrKotBW0NyTLcZzGKIlb22G1_x6vdlXg1NNoNM-8mtGD0BmGc0yr-v3Xq9Xd9-sfy3VuCZTAzisA9gIt8lSWFQH8Ei2g4lAywskRehPjLwDggPlrdISZqDkVdIF-Ln1IzuihWE-9a1xyfiq--dZ1zrZFsy1WYxO2fnKmuLJzyNxNsGYO0YdYXATdpYy5Kfki9ba48TFNOmXqU9BuOkGvOj1Ee3qox-ju8-p2-aW8vL5YLz9eloZWIpVNRxrbACHGAJPayrZi0mqBiSbUWks6brTUHLdcGkq14KBBawmdACCdrI_Rh33uw9yMtjV2SvlS9RDcqMNWee3U_5PJ9ere_1aYUuCC5YC3h4DgH2cbkxpdNHYY9GT9HBXLDKdUPgtiXjECEjLI9qAJPsZgu6drMKidQfVkUO0MKmBqZzAvnv37y9-1g7IMvNsDvbvvNy5YFUc9DBnHarPZVDlHKF4LqP8ASHWoPQ</recordid><startdate>20060712</startdate><enddate>20060712</enddate><creator>Alvarez-Dolado, Manuel</creator><creator>Calcagnotto, Maria Elisa</creator><creator>Karkar, Kameel M</creator><creator>Southwell, Derek G</creator><creator>Jones-Davis, Dorothy M</creator><creator>Estrada, Rosanne C</creator><creator>Rubenstein, John L. R</creator><creator>Alvarez-Buylla, Arturo</creator><creator>Baraban, Scott C</creator><general>Soc Neuroscience</general><general>Society for Neuroscience</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060712</creationdate><title>Cortical Inhibition Modified by Embryonic Neural Precursors Grafted into the Postnatal Brain</title><author>Alvarez-Dolado, Manuel ; Calcagnotto, Maria Elisa ; Karkar, Kameel M ; Southwell, Derek G ; Jones-Davis, Dorothy M ; Estrada, Rosanne C ; Rubenstein, John L. R ; Alvarez-Buylla, Arturo ; Baraban, Scott C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c528t-bf4beb044cc069ae9d269ea814a45eee4f7ca9a71d79c55a870a0aa90f8004f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Action Potentials</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Brain - cytology</topic><topic>Brain - physiology</topic><topic>Cell Differentiation</topic><topic>Cell Movement</topic><topic>Cerebral Cortex - cytology</topic><topic>Cerebral Cortex - physiology</topic><topic>Embryo, Mammalian - cytology</topic><topic>gamma-Aminobutyric Acid - physiology</topic><topic>Green Fluorescent Proteins - biosynthesis</topic><topic>In Vitro Techniques</topic><topic>Interneurons - physiology</topic><topic>Kinetics</topic><topic>Median Eminence - cytology</topic><topic>Mice</topic><topic>Mice, Transgenic</topic><topic>Neural Inhibition</topic><topic>Neurons - cytology</topic><topic>Neurons - physiology</topic><topic>Patch-Clamp Techniques</topic><topic>Phenotype</topic><topic>Stem Cell Transplantation</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alvarez-Dolado, Manuel</creatorcontrib><creatorcontrib>Calcagnotto, Maria Elisa</creatorcontrib><creatorcontrib>Karkar, Kameel M</creatorcontrib><creatorcontrib>Southwell, Derek G</creatorcontrib><creatorcontrib>Jones-Davis, Dorothy M</creatorcontrib><creatorcontrib>Estrada, Rosanne C</creatorcontrib><creatorcontrib>Rubenstein, John L. R</creatorcontrib><creatorcontrib>Alvarez-Buylla, Arturo</creatorcontrib><creatorcontrib>Baraban, Scott C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alvarez-Dolado, Manuel</au><au>Calcagnotto, Maria Elisa</au><au>Karkar, Kameel M</au><au>Southwell, Derek G</au><au>Jones-Davis, Dorothy M</au><au>Estrada, Rosanne C</au><au>Rubenstein, John L. R</au><au>Alvarez-Buylla, Arturo</au><au>Baraban, Scott C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cortical Inhibition Modified by Embryonic Neural Precursors Grafted into the Postnatal Brain</atitle><jtitle>The Journal of neuroscience</jtitle><addtitle>J Neurosci</addtitle><date>2006-07-12</date><risdate>2006</risdate><volume>26</volume><issue>28</issue><spage>7380</spage><epage>7389</epage><pages>7380-7389</pages><issn>0270-6474</issn><eissn>1529-2401</eissn><abstract>Embryonic medial ganglionic eminence (MGE) cells transplanted into the adult brain can disperse, migrate, and differentiate to neurons expressing GABA, the primary inhibitory neurotransmitter. It has been hypothesized that grafted MGE precursors could have important therapeutic applications increasing local inhibition, but there is no evidence that MGE cells can modify neural circuits when grafted into the postnatal brain. Here we demonstrate that MGE cells grafted into one location of the neonatal rodent brain migrate widely into cortex. Grafted MGE-derived cells differentiate into mature cortical interneurons; the majority of these new interneurons express GABA. Based on their morphology and expression of somatostatin, neuropeptide Y, parvalbumin, or calretinin, we infer that graft-derived cells integrate into local circuits and function as GABA-producing inhibitory cells. Whole-cell current-clamp recordings obtained from MGE-derived cells indicate firing properties typical of mature interneurons. Moreover, patch-clamp recordings of IPSCs on pyramidal neurons in the host brain, 30 and 60 d after transplantation, indicated a significant increase in GABA-mediated synaptic inhibition in regions containing transplanted MGE cells. In contrast, synaptic excitation is not altered in the host brain. Grafted MGE cells, therefore, can be used to modify neural circuits and selectively increase local inhibition. These findings could have important implications for reparative cell therapies for brain disorders.</abstract><cop>United States</cop><pub>Soc Neuroscience</pub><pmid>16837585</pmid><doi>10.1523/JNEUROSCI.1540-06.2006</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0270-6474
ispartof The Journal of neuroscience, 2006-07, Vol.26 (28), p.7380-7389
issn 0270-6474
1529-2401
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1550786
source PubMed Central
subjects Action Potentials
Animals
Animals, Newborn
Brain - cytology
Brain - physiology
Cell Differentiation
Cell Movement
Cerebral Cortex - cytology
Cerebral Cortex - physiology
Embryo, Mammalian - cytology
gamma-Aminobutyric Acid - physiology
Green Fluorescent Proteins - biosynthesis
In Vitro Techniques
Interneurons - physiology
Kinetics
Median Eminence - cytology
Mice
Mice, Transgenic
Neural Inhibition
Neurons - cytology
Neurons - physiology
Patch-Clamp Techniques
Phenotype
Stem Cell Transplantation
Synapses - physiology
title Cortical Inhibition Modified by Embryonic Neural Precursors Grafted into the Postnatal Brain
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T17%3A05%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cortical%20Inhibition%20Modified%20by%20Embryonic%20Neural%20Precursors%20Grafted%20into%20the%20Postnatal%20Brain&rft.jtitle=The%20Journal%20of%20neuroscience&rft.au=Alvarez-Dolado,%20Manuel&rft.date=2006-07-12&rft.volume=26&rft.issue=28&rft.spage=7380&rft.epage=7389&rft.pages=7380-7389&rft.issn=0270-6474&rft.eissn=1529-2401&rft_id=info:doi/10.1523/JNEUROSCI.1540-06.2006&rft_dat=%3Cproquest_pubme%3E68637559%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c528t-bf4beb044cc069ae9d269ea814a45eee4f7ca9a71d79c55a870a0aa90f8004f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17264090&rft_id=info:pmid/16837585&rfr_iscdi=true