Loading…
Direct binding of p85 to sst2 somatostatin receptor reveals a novel mechanism for inhibiting PI3K pathway
Phosphatidylinositol 3‐kinase (PI3K) regulates many cellular functions including growth and survival, and its excessive activation is a hallmark of cancer. Somatostatin, acting through its G protein‐coupled receptor (GPCR) sst2, has potent proapoptotic and anti‐invasive activities on normal and canc...
Saved in:
Published in: | The EMBO journal 2006-09, Vol.25 (17), p.3943-3954 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6049-6f252c2ec380085da5ca0842ad42bfa580a493ae7f3744034338d5eccefd4e413 |
---|---|
cites | cdi_FETCH-LOGICAL-c6049-6f252c2ec380085da5ca0842ad42bfa580a493ae7f3744034338d5eccefd4e413 |
container_end_page | 3954 |
container_issue | 17 |
container_start_page | 3943 |
container_title | The EMBO journal |
container_volume | 25 |
creator | Bousquet, Corinne Guillermet-Guibert, Julie Saint-Laurent, Nathalie Archer-Lahlou, Elodie Lopez, Frédéric Fanjul, Marjorie Ferrand, Audrey Fourmy, Daniel Pichereaux, Carole Monsarrat, Bernard Pradayrol, Lucien Estève, Jean-Pierre Susini, Christiane |
description | Phosphatidylinositol 3‐kinase (PI3K) regulates many cellular functions including growth and survival, and its excessive activation is a hallmark of cancer. Somatostatin, acting through its G protein‐coupled receptor (GPCR) sst2, has potent proapoptotic and anti‐invasive activities on normal and cancer cells. Here, we report a novel mechanism for inhibiting PI3K activity. Somatostatin, acting through sst2, inhibits PI3K activity by disrupting a pre‐existing complex comprising the sst2 receptor and the p85 PI3K regulatory subunit. Surface plasmon resonance and molecular modeling identified the phosphorylated‐Y
71
residue of a p85‐binding pYXXM motif in the first sst2 intracellular loop, and p85 COOH‐terminal SH2 as direct interacting domains. Somatostatin‐mediated dissociation of this complex as well as p85 tyrosine dephosphorylation correlates with sst2 tyrosine dephosphorylation on the Y
71
residue. Mutating sst2‐Y
71
disabled sst2 to interact with p85 and somatostatin to inhibit PI3K, consequently abrogating sst2's ability to suppress cell survival and tumor growth. These results provide the first demonstration of a physical interaction between a GPCR and p85, revealing a novel mechanism for negative regulation by ligand‐activated GPCR of PI3K‐dependent survival pathways, which may be an important molecular target for antineoplastic therapy. |
doi_str_mv | 10.1038/sj.emboj.7601279 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1560358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1122830341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6049-6f252c2ec380085da5ca0842ad42bfa580a493ae7f3744034338d5eccefd4e413</originalsourceid><addsrcrecordid>eNqFkc9v0zAcxSMEYqVw5wKyOHBL-fpnnAsSjDEGY0xi_LhZbuK0LoldbLej_z0pqdqBhHZypPd5z895WfYYwwQDlS_iYmK6qV9MCgGYFOWdbISZgJxAwe9mIyAC5wzL8ih7EOMCALgs8P3sCIsSFxz4KLNvbDBVQlPrautmyDdoKTlKHsWYCIq-08nHpJN1qAfNMvnQf6yNbiPSyPm1aVFnqrl2Nnao6VXr5nZq0zbt8ox-QEud5td68zC71_Qm82h3jrMvb0-ujt_l559Oz45fneeVAFbmoiGcVMRUVAJIXmteaZCM6JqRaaO5BM1Kqk3R0IIxoIxSWXNTVaapmWGYjrOXQ-5yNe1MXRmXgm7VMthOh43y2qq_FWfnaubXCnMBlMs-4PkuIPifKxOT6mysTNtqZ_wqKiElEQTErSAuOQjeNxxnz_4BF34VXP8XtgwRrAToIRigKvgYg2n2lTGo7doqLtSftdVu7d7y9OZTD4bdvD1QDsC1bc3m1kB18vH1-0M4Hryxt7mZCTdK_7_Qk8HjdFoFs7_woOeDbmMyv_ayDj-UKGjB1beLU8Uvv5LP3y9AXdHfTzLjyA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195264900</pqid></control><display><type>article</type><title>Direct binding of p85 to sst2 somatostatin receptor reveals a novel mechanism for inhibiting PI3K pathway</title><source>PubMed Central</source><creator>Bousquet, Corinne ; Guillermet-Guibert, Julie ; Saint-Laurent, Nathalie ; Archer-Lahlou, Elodie ; Lopez, Frédéric ; Fanjul, Marjorie ; Ferrand, Audrey ; Fourmy, Daniel ; Pichereaux, Carole ; Monsarrat, Bernard ; Pradayrol, Lucien ; Estève, Jean-Pierre ; Susini, Christiane</creator><creatorcontrib>Bousquet, Corinne ; Guillermet-Guibert, Julie ; Saint-Laurent, Nathalie ; Archer-Lahlou, Elodie ; Lopez, Frédéric ; Fanjul, Marjorie ; Ferrand, Audrey ; Fourmy, Daniel ; Pichereaux, Carole ; Monsarrat, Bernard ; Pradayrol, Lucien ; Estève, Jean-Pierre ; Susini, Christiane</creatorcontrib><description>Phosphatidylinositol 3‐kinase (PI3K) regulates many cellular functions including growth and survival, and its excessive activation is a hallmark of cancer. Somatostatin, acting through its G protein‐coupled receptor (GPCR) sst2, has potent proapoptotic and anti‐invasive activities on normal and cancer cells. Here, we report a novel mechanism for inhibiting PI3K activity. Somatostatin, acting through sst2, inhibits PI3K activity by disrupting a pre‐existing complex comprising the sst2 receptor and the p85 PI3K regulatory subunit. Surface plasmon resonance and molecular modeling identified the phosphorylated‐Y
71
residue of a p85‐binding pYXXM motif in the first sst2 intracellular loop, and p85 COOH‐terminal SH2 as direct interacting domains. Somatostatin‐mediated dissociation of this complex as well as p85 tyrosine dephosphorylation correlates with sst2 tyrosine dephosphorylation on the Y
71
residue. Mutating sst2‐Y
71
disabled sst2 to interact with p85 and somatostatin to inhibit PI3K, consequently abrogating sst2's ability to suppress cell survival and tumor growth. These results provide the first demonstration of a physical interaction between a GPCR and p85, revealing a novel mechanism for negative regulation by ligand‐activated GPCR of PI3K‐dependent survival pathways, which may be an important molecular target for antineoplastic therapy.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/sj.emboj.7601279</identifier><identifier>PMID: 16917505</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Animals ; Binding sites ; Cell Line, Tumor ; Cell Survival ; EMBO24 ; EMBO37 ; Enzyme Activation ; Female ; G protein-coupled sst2 somatostatin receptor ; Humans ; Inhibitor drugs ; Kinases ; Mice ; Mice, Nude ; Molecular biology ; Mutation ; Neoplasm Transplantation ; Neoplasms, Experimental - pathology ; Phosphatidylinositol 3-Kinases - genetics ; Phosphatidylinositol 3-Kinases - physiology ; Phosphorylation ; PI3K pathway ; Protein Binding ; protein interaction ; Receptors, Somatostatin - genetics ; Receptors, Somatostatin - physiology ; Residues ; Resonance ; Signal Transduction ; Somatostatin - physiology ; src Homology Domains ; Surface Plasmon Resonance ; Survival ; Transplantation, Heterologous ; tumor growth ; Tyrosine - metabolism</subject><ispartof>The EMBO journal, 2006-09, Vol.25 (17), p.3943-3954</ispartof><rights>European Molecular Biology Organization 2006</rights><rights>Copyright © 2006 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Sep 6, 2006</rights><rights>Copyright © 2006, European Molecular Biology Organization 2006</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6049-6f252c2ec380085da5ca0842ad42bfa580a493ae7f3744034338d5eccefd4e413</citedby><cites>FETCH-LOGICAL-c6049-6f252c2ec380085da5ca0842ad42bfa580a493ae7f3744034338d5eccefd4e413</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1560358/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1560358/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16917505$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bousquet, Corinne</creatorcontrib><creatorcontrib>Guillermet-Guibert, Julie</creatorcontrib><creatorcontrib>Saint-Laurent, Nathalie</creatorcontrib><creatorcontrib>Archer-Lahlou, Elodie</creatorcontrib><creatorcontrib>Lopez, Frédéric</creatorcontrib><creatorcontrib>Fanjul, Marjorie</creatorcontrib><creatorcontrib>Ferrand, Audrey</creatorcontrib><creatorcontrib>Fourmy, Daniel</creatorcontrib><creatorcontrib>Pichereaux, Carole</creatorcontrib><creatorcontrib>Monsarrat, Bernard</creatorcontrib><creatorcontrib>Pradayrol, Lucien</creatorcontrib><creatorcontrib>Estève, Jean-Pierre</creatorcontrib><creatorcontrib>Susini, Christiane</creatorcontrib><title>Direct binding of p85 to sst2 somatostatin receptor reveals a novel mechanism for inhibiting PI3K pathway</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Phosphatidylinositol 3‐kinase (PI3K) regulates many cellular functions including growth and survival, and its excessive activation is a hallmark of cancer. Somatostatin, acting through its G protein‐coupled receptor (GPCR) sst2, has potent proapoptotic and anti‐invasive activities on normal and cancer cells. Here, we report a novel mechanism for inhibiting PI3K activity. Somatostatin, acting through sst2, inhibits PI3K activity by disrupting a pre‐existing complex comprising the sst2 receptor and the p85 PI3K regulatory subunit. Surface plasmon resonance and molecular modeling identified the phosphorylated‐Y
71
residue of a p85‐binding pYXXM motif in the first sst2 intracellular loop, and p85 COOH‐terminal SH2 as direct interacting domains. Somatostatin‐mediated dissociation of this complex as well as p85 tyrosine dephosphorylation correlates with sst2 tyrosine dephosphorylation on the Y
71
residue. Mutating sst2‐Y
71
disabled sst2 to interact with p85 and somatostatin to inhibit PI3K, consequently abrogating sst2's ability to suppress cell survival and tumor growth. These results provide the first demonstration of a physical interaction between a GPCR and p85, revealing a novel mechanism for negative regulation by ligand‐activated GPCR of PI3K‐dependent survival pathways, which may be an important molecular target for antineoplastic therapy.</description><subject>Animals</subject><subject>Binding sites</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival</subject><subject>EMBO24</subject><subject>EMBO37</subject><subject>Enzyme Activation</subject><subject>Female</subject><subject>G protein-coupled sst2 somatostatin receptor</subject><subject>Humans</subject><subject>Inhibitor drugs</subject><subject>Kinases</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Molecular biology</subject><subject>Mutation</subject><subject>Neoplasm Transplantation</subject><subject>Neoplasms, Experimental - pathology</subject><subject>Phosphatidylinositol 3-Kinases - genetics</subject><subject>Phosphatidylinositol 3-Kinases - physiology</subject><subject>Phosphorylation</subject><subject>PI3K pathway</subject><subject>Protein Binding</subject><subject>protein interaction</subject><subject>Receptors, Somatostatin - genetics</subject><subject>Receptors, Somatostatin - physiology</subject><subject>Residues</subject><subject>Resonance</subject><subject>Signal Transduction</subject><subject>Somatostatin - physiology</subject><subject>src Homology Domains</subject><subject>Surface Plasmon Resonance</subject><subject>Survival</subject><subject>Transplantation, Heterologous</subject><subject>tumor growth</subject><subject>Tyrosine - metabolism</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNqFkc9v0zAcxSMEYqVw5wKyOHBL-fpnnAsSjDEGY0xi_LhZbuK0LoldbLej_z0pqdqBhHZypPd5z895WfYYwwQDlS_iYmK6qV9MCgGYFOWdbISZgJxAwe9mIyAC5wzL8ih7EOMCALgs8P3sCIsSFxz4KLNvbDBVQlPrautmyDdoKTlKHsWYCIq-08nHpJN1qAfNMvnQf6yNbiPSyPm1aVFnqrl2Nnao6VXr5nZq0zbt8ox-QEud5td68zC71_Qm82h3jrMvb0-ujt_l559Oz45fneeVAFbmoiGcVMRUVAJIXmteaZCM6JqRaaO5BM1Kqk3R0IIxoIxSWXNTVaapmWGYjrOXQ-5yNe1MXRmXgm7VMthOh43y2qq_FWfnaubXCnMBlMs-4PkuIPifKxOT6mysTNtqZ_wqKiElEQTErSAuOQjeNxxnz_4BF34VXP8XtgwRrAToIRigKvgYg2n2lTGo7doqLtSftdVu7d7y9OZTD4bdvD1QDsC1bc3m1kB18vH1-0M4Hryxt7mZCTdK_7_Qk8HjdFoFs7_woOeDbmMyv_ayDj-UKGjB1beLU8Uvv5LP3y9AXdHfTzLjyA</recordid><startdate>20060906</startdate><enddate>20060906</enddate><creator>Bousquet, Corinne</creator><creator>Guillermet-Guibert, Julie</creator><creator>Saint-Laurent, Nathalie</creator><creator>Archer-Lahlou, Elodie</creator><creator>Lopez, Frédéric</creator><creator>Fanjul, Marjorie</creator><creator>Ferrand, Audrey</creator><creator>Fourmy, Daniel</creator><creator>Pichereaux, Carole</creator><creator>Monsarrat, Bernard</creator><creator>Pradayrol, Lucien</creator><creator>Estève, Jean-Pierre</creator><creator>Susini, Christiane</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20060906</creationdate><title>Direct binding of p85 to sst2 somatostatin receptor reveals a novel mechanism for inhibiting PI3K pathway</title><author>Bousquet, Corinne ; Guillermet-Guibert, Julie ; Saint-Laurent, Nathalie ; Archer-Lahlou, Elodie ; Lopez, Frédéric ; Fanjul, Marjorie ; Ferrand, Audrey ; Fourmy, Daniel ; Pichereaux, Carole ; Monsarrat, Bernard ; Pradayrol, Lucien ; Estève, Jean-Pierre ; Susini, Christiane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6049-6f252c2ec380085da5ca0842ad42bfa580a493ae7f3744034338d5eccefd4e413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Animals</topic><topic>Binding sites</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival</topic><topic>EMBO24</topic><topic>EMBO37</topic><topic>Enzyme Activation</topic><topic>Female</topic><topic>G protein-coupled sst2 somatostatin receptor</topic><topic>Humans</topic><topic>Inhibitor drugs</topic><topic>Kinases</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Molecular biology</topic><topic>Mutation</topic><topic>Neoplasm Transplantation</topic><topic>Neoplasms, Experimental - pathology</topic><topic>Phosphatidylinositol 3-Kinases - genetics</topic><topic>Phosphatidylinositol 3-Kinases - physiology</topic><topic>Phosphorylation</topic><topic>PI3K pathway</topic><topic>Protein Binding</topic><topic>protein interaction</topic><topic>Receptors, Somatostatin - genetics</topic><topic>Receptors, Somatostatin - physiology</topic><topic>Residues</topic><topic>Resonance</topic><topic>Signal Transduction</topic><topic>Somatostatin - physiology</topic><topic>src Homology Domains</topic><topic>Surface Plasmon Resonance</topic><topic>Survival</topic><topic>Transplantation, Heterologous</topic><topic>tumor growth</topic><topic>Tyrosine - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bousquet, Corinne</creatorcontrib><creatorcontrib>Guillermet-Guibert, Julie</creatorcontrib><creatorcontrib>Saint-Laurent, Nathalie</creatorcontrib><creatorcontrib>Archer-Lahlou, Elodie</creatorcontrib><creatorcontrib>Lopez, Frédéric</creatorcontrib><creatorcontrib>Fanjul, Marjorie</creatorcontrib><creatorcontrib>Ferrand, Audrey</creatorcontrib><creatorcontrib>Fourmy, Daniel</creatorcontrib><creatorcontrib>Pichereaux, Carole</creatorcontrib><creatorcontrib>Monsarrat, Bernard</creatorcontrib><creatorcontrib>Pradayrol, Lucien</creatorcontrib><creatorcontrib>Estève, Jean-Pierre</creatorcontrib><creatorcontrib>Susini, Christiane</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bousquet, Corinne</au><au>Guillermet-Guibert, Julie</au><au>Saint-Laurent, Nathalie</au><au>Archer-Lahlou, Elodie</au><au>Lopez, Frédéric</au><au>Fanjul, Marjorie</au><au>Ferrand, Audrey</au><au>Fourmy, Daniel</au><au>Pichereaux, Carole</au><au>Monsarrat, Bernard</au><au>Pradayrol, Lucien</au><au>Estève, Jean-Pierre</au><au>Susini, Christiane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct binding of p85 to sst2 somatostatin receptor reveals a novel mechanism for inhibiting PI3K pathway</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2006-09-06</date><risdate>2006</risdate><volume>25</volume><issue>17</issue><spage>3943</spage><epage>3954</epage><pages>3943-3954</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Phosphatidylinositol 3‐kinase (PI3K) regulates many cellular functions including growth and survival, and its excessive activation is a hallmark of cancer. Somatostatin, acting through its G protein‐coupled receptor (GPCR) sst2, has potent proapoptotic and anti‐invasive activities on normal and cancer cells. Here, we report a novel mechanism for inhibiting PI3K activity. Somatostatin, acting through sst2, inhibits PI3K activity by disrupting a pre‐existing complex comprising the sst2 receptor and the p85 PI3K regulatory subunit. Surface plasmon resonance and molecular modeling identified the phosphorylated‐Y
71
residue of a p85‐binding pYXXM motif in the first sst2 intracellular loop, and p85 COOH‐terminal SH2 as direct interacting domains. Somatostatin‐mediated dissociation of this complex as well as p85 tyrosine dephosphorylation correlates with sst2 tyrosine dephosphorylation on the Y
71
residue. Mutating sst2‐Y
71
disabled sst2 to interact with p85 and somatostatin to inhibit PI3K, consequently abrogating sst2's ability to suppress cell survival and tumor growth. These results provide the first demonstration of a physical interaction between a GPCR and p85, revealing a novel mechanism for negative regulation by ligand‐activated GPCR of PI3K‐dependent survival pathways, which may be an important molecular target for antineoplastic therapy.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>16917505</pmid><doi>10.1038/sj.emboj.7601279</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2006-09, Vol.25 (17), p.3943-3954 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1560358 |
source | PubMed Central |
subjects | Animals Binding sites Cell Line, Tumor Cell Survival EMBO24 EMBO37 Enzyme Activation Female G protein-coupled sst2 somatostatin receptor Humans Inhibitor drugs Kinases Mice Mice, Nude Molecular biology Mutation Neoplasm Transplantation Neoplasms, Experimental - pathology Phosphatidylinositol 3-Kinases - genetics Phosphatidylinositol 3-Kinases - physiology Phosphorylation PI3K pathway Protein Binding protein interaction Receptors, Somatostatin - genetics Receptors, Somatostatin - physiology Residues Resonance Signal Transduction Somatostatin - physiology src Homology Domains Surface Plasmon Resonance Survival Transplantation, Heterologous tumor growth Tyrosine - metabolism |
title | Direct binding of p85 to sst2 somatostatin receptor reveals a novel mechanism for inhibiting PI3K pathway |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T03%3A28%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20binding%20of%20p85%20to%20sst2%20somatostatin%20receptor%20reveals%20a%20novel%20mechanism%20for%20inhibiting%20PI3K%20pathway&rft.jtitle=The%20EMBO%20journal&rft.au=Bousquet,%20Corinne&rft.date=2006-09-06&rft.volume=25&rft.issue=17&rft.spage=3943&rft.epage=3954&rft.pages=3943-3954&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/sj.emboj.7601279&rft_dat=%3Cproquest_pubme%3E1122830341%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6049-6f252c2ec380085da5ca0842ad42bfa580a493ae7f3744034338d5eccefd4e413%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=195264900&rft_id=info:pmid/16917505&rfr_iscdi=true |