Loading…

Exogenous and endogenous catecholamines inhibit the production of macrophage inflammatory protein (MIP) 1α via a β adrenoceptor mediated mechanism

1 Noradrenaline (NA) and adrenaline (Ad) are modulators of cytokine production. Here we investigated the role of these neurotransmitters in the regulation of macrophage inflammatory protein (MIP)‐1α expression. 2 Pretreatment of RAW 264.7 macrophages with NA or Ad decreased, in a concentration‐depen...

Full description

Saved in:
Bibliographic Details
Published in:British journal of pharmacology 1998-11, Vol.125 (6), p.1297-1303
Main Authors: Haskó, György, Shanley, Thomas P, Egnaczyk, Greg, Németh, Zoltán H, Salzman, Andrew L, Vizi, E Sylvester, Szabó, Csaba
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4584-55668e31849a07b030955376bc05fc514d80ba314ec8dde4df8795922c0553b3
cites cdi_FETCH-LOGICAL-c4584-55668e31849a07b030955376bc05fc514d80ba314ec8dde4df8795922c0553b3
container_end_page 1303
container_issue 6
container_start_page 1297
container_title British journal of pharmacology
container_volume 125
creator Haskó, György
Shanley, Thomas P
Egnaczyk, Greg
Németh, Zoltán H
Salzman, Andrew L
Vizi, E Sylvester
Szabó, Csaba
description 1 Noradrenaline (NA) and adrenaline (Ad) are modulators of cytokine production. Here we investigated the role of these neurotransmitters in the regulation of macrophage inflammatory protein (MIP)‐1α expression. 2 Pretreatment of RAW 264.7 macrophages with NA or Ad decreased, in a concentration‐dependent manner (1 nm–100 μm), MIP‐1α release induced by bacterial lipopolysaccharide (LPS 10 ng ml−1 LPS). The effect of NA was reversed by the selective β‐adrenoceptor antagonist propranolol (10 μm), but not by the α‐adrenoceptor antagonist phentolamine (10 μm). 3 In the concentration range of 10 nm–10 μm, isoproterenol, a β‐adrenoceptor agonist, but not phenylephrine (a selective α1‐adrenoceptor agonist) or UK‐14304 (a selective α2‐adrenoceptor agonist) mimicked the inhibitory effects of catecholamines on MIP‐1α production. Increases in intracellular cyclic adenosine monophosphate, elicited either by the selective type IV phosphodiesterase inhibitor rolipram (0.1–10 μm), or by prostaglandin E2, (10 nm–10 μm) decreased MIP‐1α release, suggesting that increased cyclic AMP may contribute to the suppression of MIP‐1α release by β‐adrenoceptor stimulation. 4 Northern blot analysis demonstrated that NA (100 nm–10 μm), Ad, isoproterenol, as well as rolipram (100 nm–10 μm) decreased LPS‐induced MIP‐1α mRNA accumulation. NA and Ad (1–100 μm) also decreased MIP‐1α production in thioglycollate‐elicited murine peritoneal macrophages. 5 Pretreatment of mice with either isoproterenol (10 mg kg−1, i.p.) or rolipram (25 mg kg−1, i.p.) decreased LPS‐induced plasma levels of MIP‐1α, while propranolol (10 mg kg−1, i.p.) augmented the production of this chemokine, confirming the role of a β‐adrenoceptor mediated endogenous catecholamine action in the regulation of MIP‐1α production in vivo. 6 Thus, based on our data we conclude that catecholamines are important endogenous regulators of MIP‐1α expression in inflammation. British Journal of Pharmacology (1998) 125, 1297–1303; doi:10.1038/sj.bjp.0702179
doi_str_mv 10.1038/sj.bjp.0702179
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1565690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69095436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4584-55668e31849a07b030955376bc05fc514d80ba314ec8dde4df8795922c0553b3</originalsourceid><addsrcrecordid>eNqFkUFu1DAYhS0EKkNhyw7JC4RgkcGOY8fZVIKq0EpFdNG99cd2Jh4ldrAzhbkHF4GD9Ey4mlBgxcq23uf3fvsh9JySNSVMvk3bdbud1qQmJa2bB2hFq1oUnEn6EK0IIXVBqZSP0ZOUtoRkseZH6KiRgglBVuj72bewsT7sEgZvsPXm91HDbHUfBhidtwk737vWzXjuLZ5iMDs9u-Bx6PAIOoaph43NUJf5EeYQ93fUbJ3Hrz9dXL3B9PYHvnGAAd_-xGBiDtF2yiAerXE5y-SN7sG7ND5FjzoYkn22rMfo-sPZ9el5cfn548Xpu8tCV1xWBedCSMuorBogdUsYaThntWg14Z3mtDKStMBoZbU0xlamk3XDm7LMOmctO0YnB9tp1-YhtPVzhEFN0Y0Q9yqAU_8q3vVqE24U5YKLhmSDV4tBDF92Ns1qdEnbYQBv8xeqzDS8YiKD6wOYfyqlaLv7EErUXY0qbVWuUS015gsv_h7tHl96y_rLRYekYegieO3SH1eRX12XGWMH7Ksb7P4_oer91bkoScV-Ac8qu1E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69095436</pqid></control><display><type>article</type><title>Exogenous and endogenous catecholamines inhibit the production of macrophage inflammatory protein (MIP) 1α via a β adrenoceptor mediated mechanism</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><source>PubMed Central</source><creator>Haskó, György ; Shanley, Thomas P ; Egnaczyk, Greg ; Németh, Zoltán H ; Salzman, Andrew L ; Vizi, E Sylvester ; Szabó, Csaba</creator><creatorcontrib>Haskó, György ; Shanley, Thomas P ; Egnaczyk, Greg ; Németh, Zoltán H ; Salzman, Andrew L ; Vizi, E Sylvester ; Szabó, Csaba</creatorcontrib><description>1 Noradrenaline (NA) and adrenaline (Ad) are modulators of cytokine production. Here we investigated the role of these neurotransmitters in the regulation of macrophage inflammatory protein (MIP)‐1α expression. 2 Pretreatment of RAW 264.7 macrophages with NA or Ad decreased, in a concentration‐dependent manner (1 nm–100 μm), MIP‐1α release induced by bacterial lipopolysaccharide (LPS 10 ng ml−1 LPS). The effect of NA was reversed by the selective β‐adrenoceptor antagonist propranolol (10 μm), but not by the α‐adrenoceptor antagonist phentolamine (10 μm). 3 In the concentration range of 10 nm–10 μm, isoproterenol, a β‐adrenoceptor agonist, but not phenylephrine (a selective α1‐adrenoceptor agonist) or UK‐14304 (a selective α2‐adrenoceptor agonist) mimicked the inhibitory effects of catecholamines on MIP‐1α production. Increases in intracellular cyclic adenosine monophosphate, elicited either by the selective type IV phosphodiesterase inhibitor rolipram (0.1–10 μm), or by prostaglandin E2, (10 nm–10 μm) decreased MIP‐1α release, suggesting that increased cyclic AMP may contribute to the suppression of MIP‐1α release by β‐adrenoceptor stimulation. 4 Northern blot analysis demonstrated that NA (100 nm–10 μm), Ad, isoproterenol, as well as rolipram (100 nm–10 μm) decreased LPS‐induced MIP‐1α mRNA accumulation. NA and Ad (1–100 μm) also decreased MIP‐1α production in thioglycollate‐elicited murine peritoneal macrophages. 5 Pretreatment of mice with either isoproterenol (10 mg kg−1, i.p.) or rolipram (25 mg kg−1, i.p.) decreased LPS‐induced plasma levels of MIP‐1α, while propranolol (10 mg kg−1, i.p.) augmented the production of this chemokine, confirming the role of a β‐adrenoceptor mediated endogenous catecholamine action in the regulation of MIP‐1α production in vivo. 6 Thus, based on our data we conclude that catecholamines are important endogenous regulators of MIP‐1α expression in inflammation. British Journal of Pharmacology (1998) 125, 1297–1303; doi:10.1038/sj.bjp.0702179</description><identifier>ISSN: 0007-1188</identifier><identifier>EISSN: 1476-5381</identifier><identifier>DOI: 10.1038/sj.bjp.0702179</identifier><identifier>PMID: 9863660</identifier><identifier>CODEN: BJPCBM</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>adrenergic ; Adrenergic alpha-Agonists - pharmacology ; Adrenergic beta-Agonists - pharmacology ; Animals ; Antibody Formation ; Bacterial diseases ; Biological and medical sciences ; Cell Adhesion - physiology ; Cells, Cultured ; Chemokine CCL3 ; Chemokine CCL4 ; Chemokines ; Cyclic AMP - metabolism ; Cyclic AMP - physiology ; Epinephrine - pharmacology ; Epinephrine - physiology ; Experimental bacterial diseases and models ; Fundamental and applied biological sciences. Psychology ; Fundamental immunology ; Immunobiology ; Infectious diseases ; inflammation ; Isoproterenol - pharmacology ; Lipopolysaccharides - pharmacology ; macrophage ; Macrophage Inflammatory Proteins - biosynthesis ; Macrophage Inflammatory Proteins - blood ; Macrophages, Peritoneal - drug effects ; Macrophages, Peritoneal - metabolism ; Macrophages, Peritoneal - physiology ; Male ; Medical sciences ; Mice ; Mice, Inbred BALB C ; Monocytes, macrophages ; Myeloid cells: ontogeny, maturation, markers, receptors ; Norepinephrine - pharmacology ; Norepinephrine - physiology ; Receptors, Adrenergic, beta - drug effects ; Receptors, Adrenergic, beta - physiology ; RNA, Messenger - metabolism ; sympathetic nervous system ; Sympathetic Nervous System - drug effects ; Sympathetic Nervous System - physiology ; Thioglycolates - pharmacology</subject><ispartof>British journal of pharmacology, 1998-11, Vol.125 (6), p.1297-1303</ispartof><rights>1998 British Pharmacological Society</rights><rights>1999 INIST-CNRS</rights><rights>Copyright 1998, Nature Publishing Group 1998 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4584-55668e31849a07b030955376bc05fc514d80ba314ec8dde4df8795922c0553b3</citedby><cites>FETCH-LOGICAL-c4584-55668e31849a07b030955376bc05fc514d80ba314ec8dde4df8795922c0553b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1565690/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1565690/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1631472$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9863660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haskó, György</creatorcontrib><creatorcontrib>Shanley, Thomas P</creatorcontrib><creatorcontrib>Egnaczyk, Greg</creatorcontrib><creatorcontrib>Németh, Zoltán H</creatorcontrib><creatorcontrib>Salzman, Andrew L</creatorcontrib><creatorcontrib>Vizi, E Sylvester</creatorcontrib><creatorcontrib>Szabó, Csaba</creatorcontrib><title>Exogenous and endogenous catecholamines inhibit the production of macrophage inflammatory protein (MIP) 1α via a β adrenoceptor mediated mechanism</title><title>British journal of pharmacology</title><addtitle>Br J Pharmacol</addtitle><description>1 Noradrenaline (NA) and adrenaline (Ad) are modulators of cytokine production. Here we investigated the role of these neurotransmitters in the regulation of macrophage inflammatory protein (MIP)‐1α expression. 2 Pretreatment of RAW 264.7 macrophages with NA or Ad decreased, in a concentration‐dependent manner (1 nm–100 μm), MIP‐1α release induced by bacterial lipopolysaccharide (LPS 10 ng ml−1 LPS). The effect of NA was reversed by the selective β‐adrenoceptor antagonist propranolol (10 μm), but not by the α‐adrenoceptor antagonist phentolamine (10 μm). 3 In the concentration range of 10 nm–10 μm, isoproterenol, a β‐adrenoceptor agonist, but not phenylephrine (a selective α1‐adrenoceptor agonist) or UK‐14304 (a selective α2‐adrenoceptor agonist) mimicked the inhibitory effects of catecholamines on MIP‐1α production. Increases in intracellular cyclic adenosine monophosphate, elicited either by the selective type IV phosphodiesterase inhibitor rolipram (0.1–10 μm), or by prostaglandin E2, (10 nm–10 μm) decreased MIP‐1α release, suggesting that increased cyclic AMP may contribute to the suppression of MIP‐1α release by β‐adrenoceptor stimulation. 4 Northern blot analysis demonstrated that NA (100 nm–10 μm), Ad, isoproterenol, as well as rolipram (100 nm–10 μm) decreased LPS‐induced MIP‐1α mRNA accumulation. NA and Ad (1–100 μm) also decreased MIP‐1α production in thioglycollate‐elicited murine peritoneal macrophages. 5 Pretreatment of mice with either isoproterenol (10 mg kg−1, i.p.) or rolipram (25 mg kg−1, i.p.) decreased LPS‐induced plasma levels of MIP‐1α, while propranolol (10 mg kg−1, i.p.) augmented the production of this chemokine, confirming the role of a β‐adrenoceptor mediated endogenous catecholamine action in the regulation of MIP‐1α production in vivo. 6 Thus, based on our data we conclude that catecholamines are important endogenous regulators of MIP‐1α expression in inflammation. British Journal of Pharmacology (1998) 125, 1297–1303; doi:10.1038/sj.bjp.0702179</description><subject>adrenergic</subject><subject>Adrenergic alpha-Agonists - pharmacology</subject><subject>Adrenergic beta-Agonists - pharmacology</subject><subject>Animals</subject><subject>Antibody Formation</subject><subject>Bacterial diseases</subject><subject>Biological and medical sciences</subject><subject>Cell Adhesion - physiology</subject><subject>Cells, Cultured</subject><subject>Chemokine CCL3</subject><subject>Chemokine CCL4</subject><subject>Chemokines</subject><subject>Cyclic AMP - metabolism</subject><subject>Cyclic AMP - physiology</subject><subject>Epinephrine - pharmacology</subject><subject>Epinephrine - physiology</subject><subject>Experimental bacterial diseases and models</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundamental immunology</subject><subject>Immunobiology</subject><subject>Infectious diseases</subject><subject>inflammation</subject><subject>Isoproterenol - pharmacology</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>macrophage</subject><subject>Macrophage Inflammatory Proteins - biosynthesis</subject><subject>Macrophage Inflammatory Proteins - blood</subject><subject>Macrophages, Peritoneal - drug effects</subject><subject>Macrophages, Peritoneal - metabolism</subject><subject>Macrophages, Peritoneal - physiology</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Monocytes, macrophages</subject><subject>Myeloid cells: ontogeny, maturation, markers, receptors</subject><subject>Norepinephrine - pharmacology</subject><subject>Norepinephrine - physiology</subject><subject>Receptors, Adrenergic, beta - drug effects</subject><subject>Receptors, Adrenergic, beta - physiology</subject><subject>RNA, Messenger - metabolism</subject><subject>sympathetic nervous system</subject><subject>Sympathetic Nervous System - drug effects</subject><subject>Sympathetic Nervous System - physiology</subject><subject>Thioglycolates - pharmacology</subject><issn>0007-1188</issn><issn>1476-5381</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkUFu1DAYhS0EKkNhyw7JC4RgkcGOY8fZVIKq0EpFdNG99cd2Jh4ldrAzhbkHF4GD9Ey4mlBgxcq23uf3fvsh9JySNSVMvk3bdbud1qQmJa2bB2hFq1oUnEn6EK0IIXVBqZSP0ZOUtoRkseZH6KiRgglBVuj72bewsT7sEgZvsPXm91HDbHUfBhidtwk737vWzXjuLZ5iMDs9u-Bx6PAIOoaph43NUJf5EeYQ93fUbJ3Hrz9dXL3B9PYHvnGAAd_-xGBiDtF2yiAerXE5y-SN7sG7ND5FjzoYkn22rMfo-sPZ9el5cfn548Xpu8tCV1xWBedCSMuorBogdUsYaThntWg14Z3mtDKStMBoZbU0xlamk3XDm7LMOmctO0YnB9tp1-YhtPVzhEFN0Y0Q9yqAU_8q3vVqE24U5YKLhmSDV4tBDF92Ns1qdEnbYQBv8xeqzDS8YiKD6wOYfyqlaLv7EErUXY0qbVWuUS015gsv_h7tHl96y_rLRYekYegieO3SH1eRX12XGWMH7Ksb7P4_oer91bkoScV-Ac8qu1E</recordid><startdate>199811</startdate><enddate>199811</enddate><creator>Haskó, György</creator><creator>Shanley, Thomas P</creator><creator>Egnaczyk, Greg</creator><creator>Németh, Zoltán H</creator><creator>Salzman, Andrew L</creator><creator>Vizi, E Sylvester</creator><creator>Szabó, Csaba</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>199811</creationdate><title>Exogenous and endogenous catecholamines inhibit the production of macrophage inflammatory protein (MIP) 1α via a β adrenoceptor mediated mechanism</title><author>Haskó, György ; Shanley, Thomas P ; Egnaczyk, Greg ; Németh, Zoltán H ; Salzman, Andrew L ; Vizi, E Sylvester ; Szabó, Csaba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4584-55668e31849a07b030955376bc05fc514d80ba314ec8dde4df8795922c0553b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>adrenergic</topic><topic>Adrenergic alpha-Agonists - pharmacology</topic><topic>Adrenergic beta-Agonists - pharmacology</topic><topic>Animals</topic><topic>Antibody Formation</topic><topic>Bacterial diseases</topic><topic>Biological and medical sciences</topic><topic>Cell Adhesion - physiology</topic><topic>Cells, Cultured</topic><topic>Chemokine CCL3</topic><topic>Chemokine CCL4</topic><topic>Chemokines</topic><topic>Cyclic AMP - metabolism</topic><topic>Cyclic AMP - physiology</topic><topic>Epinephrine - pharmacology</topic><topic>Epinephrine - physiology</topic><topic>Experimental bacterial diseases and models</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundamental immunology</topic><topic>Immunobiology</topic><topic>Infectious diseases</topic><topic>inflammation</topic><topic>Isoproterenol - pharmacology</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>macrophage</topic><topic>Macrophage Inflammatory Proteins - biosynthesis</topic><topic>Macrophage Inflammatory Proteins - blood</topic><topic>Macrophages, Peritoneal - drug effects</topic><topic>Macrophages, Peritoneal - metabolism</topic><topic>Macrophages, Peritoneal - physiology</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Monocytes, macrophages</topic><topic>Myeloid cells: ontogeny, maturation, markers, receptors</topic><topic>Norepinephrine - pharmacology</topic><topic>Norepinephrine - physiology</topic><topic>Receptors, Adrenergic, beta - drug effects</topic><topic>Receptors, Adrenergic, beta - physiology</topic><topic>RNA, Messenger - metabolism</topic><topic>sympathetic nervous system</topic><topic>Sympathetic Nervous System - drug effects</topic><topic>Sympathetic Nervous System - physiology</topic><topic>Thioglycolates - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haskó, György</creatorcontrib><creatorcontrib>Shanley, Thomas P</creatorcontrib><creatorcontrib>Egnaczyk, Greg</creatorcontrib><creatorcontrib>Németh, Zoltán H</creatorcontrib><creatorcontrib>Salzman, Andrew L</creatorcontrib><creatorcontrib>Vizi, E Sylvester</creatorcontrib><creatorcontrib>Szabó, Csaba</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haskó, György</au><au>Shanley, Thomas P</au><au>Egnaczyk, Greg</au><au>Németh, Zoltán H</au><au>Salzman, Andrew L</au><au>Vizi, E Sylvester</au><au>Szabó, Csaba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exogenous and endogenous catecholamines inhibit the production of macrophage inflammatory protein (MIP) 1α via a β adrenoceptor mediated mechanism</atitle><jtitle>British journal of pharmacology</jtitle><addtitle>Br J Pharmacol</addtitle><date>1998-11</date><risdate>1998</risdate><volume>125</volume><issue>6</issue><spage>1297</spage><epage>1303</epage><pages>1297-1303</pages><issn>0007-1188</issn><eissn>1476-5381</eissn><coden>BJPCBM</coden><abstract>1 Noradrenaline (NA) and adrenaline (Ad) are modulators of cytokine production. Here we investigated the role of these neurotransmitters in the regulation of macrophage inflammatory protein (MIP)‐1α expression. 2 Pretreatment of RAW 264.7 macrophages with NA or Ad decreased, in a concentration‐dependent manner (1 nm–100 μm), MIP‐1α release induced by bacterial lipopolysaccharide (LPS 10 ng ml−1 LPS). The effect of NA was reversed by the selective β‐adrenoceptor antagonist propranolol (10 μm), but not by the α‐adrenoceptor antagonist phentolamine (10 μm). 3 In the concentration range of 10 nm–10 μm, isoproterenol, a β‐adrenoceptor agonist, but not phenylephrine (a selective α1‐adrenoceptor agonist) or UK‐14304 (a selective α2‐adrenoceptor agonist) mimicked the inhibitory effects of catecholamines on MIP‐1α production. Increases in intracellular cyclic adenosine monophosphate, elicited either by the selective type IV phosphodiesterase inhibitor rolipram (0.1–10 μm), or by prostaglandin E2, (10 nm–10 μm) decreased MIP‐1α release, suggesting that increased cyclic AMP may contribute to the suppression of MIP‐1α release by β‐adrenoceptor stimulation. 4 Northern blot analysis demonstrated that NA (100 nm–10 μm), Ad, isoproterenol, as well as rolipram (100 nm–10 μm) decreased LPS‐induced MIP‐1α mRNA accumulation. NA and Ad (1–100 μm) also decreased MIP‐1α production in thioglycollate‐elicited murine peritoneal macrophages. 5 Pretreatment of mice with either isoproterenol (10 mg kg−1, i.p.) or rolipram (25 mg kg−1, i.p.) decreased LPS‐induced plasma levels of MIP‐1α, while propranolol (10 mg kg−1, i.p.) augmented the production of this chemokine, confirming the role of a β‐adrenoceptor mediated endogenous catecholamine action in the regulation of MIP‐1α production in vivo. 6 Thus, based on our data we conclude that catecholamines are important endogenous regulators of MIP‐1α expression in inflammation. British Journal of Pharmacology (1998) 125, 1297–1303; doi:10.1038/sj.bjp.0702179</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>9863660</pmid><doi>10.1038/sj.bjp.0702179</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0007-1188
ispartof British journal of pharmacology, 1998-11, Vol.125 (6), p.1297-1303
issn 0007-1188
1476-5381
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1565690
source Wiley-Blackwell Read & Publish Collection; PubMed Central
subjects adrenergic
Adrenergic alpha-Agonists - pharmacology
Adrenergic beta-Agonists - pharmacology
Animals
Antibody Formation
Bacterial diseases
Biological and medical sciences
Cell Adhesion - physiology
Cells, Cultured
Chemokine CCL3
Chemokine CCL4
Chemokines
Cyclic AMP - metabolism
Cyclic AMP - physiology
Epinephrine - pharmacology
Epinephrine - physiology
Experimental bacterial diseases and models
Fundamental and applied biological sciences. Psychology
Fundamental immunology
Immunobiology
Infectious diseases
inflammation
Isoproterenol - pharmacology
Lipopolysaccharides - pharmacology
macrophage
Macrophage Inflammatory Proteins - biosynthesis
Macrophage Inflammatory Proteins - blood
Macrophages, Peritoneal - drug effects
Macrophages, Peritoneal - metabolism
Macrophages, Peritoneal - physiology
Male
Medical sciences
Mice
Mice, Inbred BALB C
Monocytes, macrophages
Myeloid cells: ontogeny, maturation, markers, receptors
Norepinephrine - pharmacology
Norepinephrine - physiology
Receptors, Adrenergic, beta - drug effects
Receptors, Adrenergic, beta - physiology
RNA, Messenger - metabolism
sympathetic nervous system
Sympathetic Nervous System - drug effects
Sympathetic Nervous System - physiology
Thioglycolates - pharmacology
title Exogenous and endogenous catecholamines inhibit the production of macrophage inflammatory protein (MIP) 1α via a β adrenoceptor mediated mechanism
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A02%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exogenous%20and%20endogenous%20catecholamines%20inhibit%20the%20production%20of%20macrophage%20inflammatory%20protein%20(MIP)%201%CE%B1%20via%20a%20%CE%B2%20adrenoceptor%20mediated%20mechanism&rft.jtitle=British%20journal%20of%20pharmacology&rft.au=Hask%C3%B3,%20Gy%C3%B6rgy&rft.date=1998-11&rft.volume=125&rft.issue=6&rft.spage=1297&rft.epage=1303&rft.pages=1297-1303&rft.issn=0007-1188&rft.eissn=1476-5381&rft.coden=BJPCBM&rft_id=info:doi/10.1038/sj.bjp.0702179&rft_dat=%3Cproquest_pubme%3E69095436%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4584-55668e31849a07b030955376bc05fc514d80ba314ec8dde4df8795922c0553b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69095436&rft_id=info:pmid/9863660&rfr_iscdi=true