Loading…
Exogenous and endogenous catecholamines inhibit the production of macrophage inflammatory protein (MIP) 1α via a β adrenoceptor mediated mechanism
1 Noradrenaline (NA) and adrenaline (Ad) are modulators of cytokine production. Here we investigated the role of these neurotransmitters in the regulation of macrophage inflammatory protein (MIP)‐1α expression. 2 Pretreatment of RAW 264.7 macrophages with NA or Ad decreased, in a concentration‐depen...
Saved in:
Published in: | British journal of pharmacology 1998-11, Vol.125 (6), p.1297-1303 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4584-55668e31849a07b030955376bc05fc514d80ba314ec8dde4df8795922c0553b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4584-55668e31849a07b030955376bc05fc514d80ba314ec8dde4df8795922c0553b3 |
container_end_page | 1303 |
container_issue | 6 |
container_start_page | 1297 |
container_title | British journal of pharmacology |
container_volume | 125 |
creator | Haskó, György Shanley, Thomas P Egnaczyk, Greg Németh, Zoltán H Salzman, Andrew L Vizi, E Sylvester Szabó, Csaba |
description | 1
Noradrenaline (NA) and adrenaline (Ad) are modulators of cytokine production. Here we investigated the role of these neurotransmitters in the regulation of macrophage inflammatory protein (MIP)‐1α expression.
2
Pretreatment of RAW 264.7 macrophages with NA or Ad decreased, in a concentration‐dependent manner (1 nm–100 μm), MIP‐1α release induced by bacterial lipopolysaccharide (LPS 10 ng ml−1 LPS). The effect of NA was reversed by the selective β‐adrenoceptor antagonist propranolol (10 μm), but not by the α‐adrenoceptor antagonist phentolamine (10 μm).
3
In the concentration range of 10 nm–10 μm, isoproterenol, a β‐adrenoceptor agonist, but not phenylephrine (a selective α1‐adrenoceptor agonist) or UK‐14304 (a selective α2‐adrenoceptor agonist) mimicked the inhibitory effects of catecholamines on MIP‐1α production. Increases in intracellular cyclic adenosine monophosphate, elicited either by the selective type IV phosphodiesterase inhibitor rolipram (0.1–10 μm), or by prostaglandin E2, (10 nm–10 μm) decreased MIP‐1α release, suggesting that increased cyclic AMP may contribute to the suppression of MIP‐1α release by β‐adrenoceptor stimulation.
4
Northern blot analysis demonstrated that NA (100 nm–10 μm), Ad, isoproterenol, as well as rolipram (100 nm–10 μm) decreased LPS‐induced MIP‐1α mRNA accumulation. NA and Ad (1–100 μm) also decreased MIP‐1α production in thioglycollate‐elicited murine peritoneal macrophages.
5
Pretreatment of mice with either isoproterenol (10 mg kg−1, i.p.) or rolipram (25 mg kg−1, i.p.) decreased LPS‐induced plasma levels of MIP‐1α, while propranolol (10 mg kg−1, i.p.) augmented the production of this chemokine, confirming the role of a β‐adrenoceptor mediated endogenous catecholamine action in the regulation of MIP‐1α production in vivo.
6
Thus, based on our data we conclude that catecholamines are important endogenous regulators of MIP‐1α expression in inflammation.
British Journal of Pharmacology (1998) 125, 1297–1303; doi:10.1038/sj.bjp.0702179 |
doi_str_mv | 10.1038/sj.bjp.0702179 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1565690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69095436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4584-55668e31849a07b030955376bc05fc514d80ba314ec8dde4df8795922c0553b3</originalsourceid><addsrcrecordid>eNqFkUFu1DAYhS0EKkNhyw7JC4RgkcGOY8fZVIKq0EpFdNG99cd2Jh4ldrAzhbkHF4GD9Ey4mlBgxcq23uf3fvsh9JySNSVMvk3bdbud1qQmJa2bB2hFq1oUnEn6EK0IIXVBqZSP0ZOUtoRkseZH6KiRgglBVuj72bewsT7sEgZvsPXm91HDbHUfBhidtwk737vWzXjuLZ5iMDs9u-Bx6PAIOoaph43NUJf5EeYQ93fUbJ3Hrz9dXL3B9PYHvnGAAd_-xGBiDtF2yiAerXE5y-SN7sG7ND5FjzoYkn22rMfo-sPZ9el5cfn548Xpu8tCV1xWBedCSMuorBogdUsYaThntWg14Z3mtDKStMBoZbU0xlamk3XDm7LMOmctO0YnB9tp1-YhtPVzhEFN0Y0Q9yqAU_8q3vVqE24U5YKLhmSDV4tBDF92Ns1qdEnbYQBv8xeqzDS8YiKD6wOYfyqlaLv7EErUXY0qbVWuUS015gsv_h7tHl96y_rLRYekYegieO3SH1eRX12XGWMH7Ksb7P4_oer91bkoScV-Ac8qu1E</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69095436</pqid></control><display><type>article</type><title>Exogenous and endogenous catecholamines inhibit the production of macrophage inflammatory protein (MIP) 1α via a β adrenoceptor mediated mechanism</title><source>Wiley-Blackwell Read & Publish Collection</source><source>PubMed Central</source><creator>Haskó, György ; Shanley, Thomas P ; Egnaczyk, Greg ; Németh, Zoltán H ; Salzman, Andrew L ; Vizi, E Sylvester ; Szabó, Csaba</creator><creatorcontrib>Haskó, György ; Shanley, Thomas P ; Egnaczyk, Greg ; Németh, Zoltán H ; Salzman, Andrew L ; Vizi, E Sylvester ; Szabó, Csaba</creatorcontrib><description>1
Noradrenaline (NA) and adrenaline (Ad) are modulators of cytokine production. Here we investigated the role of these neurotransmitters in the regulation of macrophage inflammatory protein (MIP)‐1α expression.
2
Pretreatment of RAW 264.7 macrophages with NA or Ad decreased, in a concentration‐dependent manner (1 nm–100 μm), MIP‐1α release induced by bacterial lipopolysaccharide (LPS 10 ng ml−1 LPS). The effect of NA was reversed by the selective β‐adrenoceptor antagonist propranolol (10 μm), but not by the α‐adrenoceptor antagonist phentolamine (10 μm).
3
In the concentration range of 10 nm–10 μm, isoproterenol, a β‐adrenoceptor agonist, but not phenylephrine (a selective α1‐adrenoceptor agonist) or UK‐14304 (a selective α2‐adrenoceptor agonist) mimicked the inhibitory effects of catecholamines on MIP‐1α production. Increases in intracellular cyclic adenosine monophosphate, elicited either by the selective type IV phosphodiesterase inhibitor rolipram (0.1–10 μm), or by prostaglandin E2, (10 nm–10 μm) decreased MIP‐1α release, suggesting that increased cyclic AMP may contribute to the suppression of MIP‐1α release by β‐adrenoceptor stimulation.
4
Northern blot analysis demonstrated that NA (100 nm–10 μm), Ad, isoproterenol, as well as rolipram (100 nm–10 μm) decreased LPS‐induced MIP‐1α mRNA accumulation. NA and Ad (1–100 μm) also decreased MIP‐1α production in thioglycollate‐elicited murine peritoneal macrophages.
5
Pretreatment of mice with either isoproterenol (10 mg kg−1, i.p.) or rolipram (25 mg kg−1, i.p.) decreased LPS‐induced plasma levels of MIP‐1α, while propranolol (10 mg kg−1, i.p.) augmented the production of this chemokine, confirming the role of a β‐adrenoceptor mediated endogenous catecholamine action in the regulation of MIP‐1α production in vivo.
6
Thus, based on our data we conclude that catecholamines are important endogenous regulators of MIP‐1α expression in inflammation.
British Journal of Pharmacology (1998) 125, 1297–1303; doi:10.1038/sj.bjp.0702179</description><identifier>ISSN: 0007-1188</identifier><identifier>EISSN: 1476-5381</identifier><identifier>DOI: 10.1038/sj.bjp.0702179</identifier><identifier>PMID: 9863660</identifier><identifier>CODEN: BJPCBM</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>adrenergic ; Adrenergic alpha-Agonists - pharmacology ; Adrenergic beta-Agonists - pharmacology ; Animals ; Antibody Formation ; Bacterial diseases ; Biological and medical sciences ; Cell Adhesion - physiology ; Cells, Cultured ; Chemokine CCL3 ; Chemokine CCL4 ; Chemokines ; Cyclic AMP - metabolism ; Cyclic AMP - physiology ; Epinephrine - pharmacology ; Epinephrine - physiology ; Experimental bacterial diseases and models ; Fundamental and applied biological sciences. Psychology ; Fundamental immunology ; Immunobiology ; Infectious diseases ; inflammation ; Isoproterenol - pharmacology ; Lipopolysaccharides - pharmacology ; macrophage ; Macrophage Inflammatory Proteins - biosynthesis ; Macrophage Inflammatory Proteins - blood ; Macrophages, Peritoneal - drug effects ; Macrophages, Peritoneal - metabolism ; Macrophages, Peritoneal - physiology ; Male ; Medical sciences ; Mice ; Mice, Inbred BALB C ; Monocytes, macrophages ; Myeloid cells: ontogeny, maturation, markers, receptors ; Norepinephrine - pharmacology ; Norepinephrine - physiology ; Receptors, Adrenergic, beta - drug effects ; Receptors, Adrenergic, beta - physiology ; RNA, Messenger - metabolism ; sympathetic nervous system ; Sympathetic Nervous System - drug effects ; Sympathetic Nervous System - physiology ; Thioglycolates - pharmacology</subject><ispartof>British journal of pharmacology, 1998-11, Vol.125 (6), p.1297-1303</ispartof><rights>1998 British Pharmacological Society</rights><rights>1999 INIST-CNRS</rights><rights>Copyright 1998, Nature Publishing Group 1998 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4584-55668e31849a07b030955376bc05fc514d80ba314ec8dde4df8795922c0553b3</citedby><cites>FETCH-LOGICAL-c4584-55668e31849a07b030955376bc05fc514d80ba314ec8dde4df8795922c0553b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1565690/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC1565690/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1631472$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/9863660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Haskó, György</creatorcontrib><creatorcontrib>Shanley, Thomas P</creatorcontrib><creatorcontrib>Egnaczyk, Greg</creatorcontrib><creatorcontrib>Németh, Zoltán H</creatorcontrib><creatorcontrib>Salzman, Andrew L</creatorcontrib><creatorcontrib>Vizi, E Sylvester</creatorcontrib><creatorcontrib>Szabó, Csaba</creatorcontrib><title>Exogenous and endogenous catecholamines inhibit the production of macrophage inflammatory protein (MIP) 1α via a β adrenoceptor mediated mechanism</title><title>British journal of pharmacology</title><addtitle>Br J Pharmacol</addtitle><description>1
Noradrenaline (NA) and adrenaline (Ad) are modulators of cytokine production. Here we investigated the role of these neurotransmitters in the regulation of macrophage inflammatory protein (MIP)‐1α expression.
2
Pretreatment of RAW 264.7 macrophages with NA or Ad decreased, in a concentration‐dependent manner (1 nm–100 μm), MIP‐1α release induced by bacterial lipopolysaccharide (LPS 10 ng ml−1 LPS). The effect of NA was reversed by the selective β‐adrenoceptor antagonist propranolol (10 μm), but not by the α‐adrenoceptor antagonist phentolamine (10 μm).
3
In the concentration range of 10 nm–10 μm, isoproterenol, a β‐adrenoceptor agonist, but not phenylephrine (a selective α1‐adrenoceptor agonist) or UK‐14304 (a selective α2‐adrenoceptor agonist) mimicked the inhibitory effects of catecholamines on MIP‐1α production. Increases in intracellular cyclic adenosine monophosphate, elicited either by the selective type IV phosphodiesterase inhibitor rolipram (0.1–10 μm), or by prostaglandin E2, (10 nm–10 μm) decreased MIP‐1α release, suggesting that increased cyclic AMP may contribute to the suppression of MIP‐1α release by β‐adrenoceptor stimulation.
4
Northern blot analysis demonstrated that NA (100 nm–10 μm), Ad, isoproterenol, as well as rolipram (100 nm–10 μm) decreased LPS‐induced MIP‐1α mRNA accumulation. NA and Ad (1–100 μm) also decreased MIP‐1α production in thioglycollate‐elicited murine peritoneal macrophages.
5
Pretreatment of mice with either isoproterenol (10 mg kg−1, i.p.) or rolipram (25 mg kg−1, i.p.) decreased LPS‐induced plasma levels of MIP‐1α, while propranolol (10 mg kg−1, i.p.) augmented the production of this chemokine, confirming the role of a β‐adrenoceptor mediated endogenous catecholamine action in the regulation of MIP‐1α production in vivo.
6
Thus, based on our data we conclude that catecholamines are important endogenous regulators of MIP‐1α expression in inflammation.
British Journal of Pharmacology (1998) 125, 1297–1303; doi:10.1038/sj.bjp.0702179</description><subject>adrenergic</subject><subject>Adrenergic alpha-Agonists - pharmacology</subject><subject>Adrenergic beta-Agonists - pharmacology</subject><subject>Animals</subject><subject>Antibody Formation</subject><subject>Bacterial diseases</subject><subject>Biological and medical sciences</subject><subject>Cell Adhesion - physiology</subject><subject>Cells, Cultured</subject><subject>Chemokine CCL3</subject><subject>Chemokine CCL4</subject><subject>Chemokines</subject><subject>Cyclic AMP - metabolism</subject><subject>Cyclic AMP - physiology</subject><subject>Epinephrine - pharmacology</subject><subject>Epinephrine - physiology</subject><subject>Experimental bacterial diseases and models</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Fundamental immunology</subject><subject>Immunobiology</subject><subject>Infectious diseases</subject><subject>inflammation</subject><subject>Isoproterenol - pharmacology</subject><subject>Lipopolysaccharides - pharmacology</subject><subject>macrophage</subject><subject>Macrophage Inflammatory Proteins - biosynthesis</subject><subject>Macrophage Inflammatory Proteins - blood</subject><subject>Macrophages, Peritoneal - drug effects</subject><subject>Macrophages, Peritoneal - metabolism</subject><subject>Macrophages, Peritoneal - physiology</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Monocytes, macrophages</subject><subject>Myeloid cells: ontogeny, maturation, markers, receptors</subject><subject>Norepinephrine - pharmacology</subject><subject>Norepinephrine - physiology</subject><subject>Receptors, Adrenergic, beta - drug effects</subject><subject>Receptors, Adrenergic, beta - physiology</subject><subject>RNA, Messenger - metabolism</subject><subject>sympathetic nervous system</subject><subject>Sympathetic Nervous System - drug effects</subject><subject>Sympathetic Nervous System - physiology</subject><subject>Thioglycolates - pharmacology</subject><issn>0007-1188</issn><issn>1476-5381</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1998</creationdate><recordtype>article</recordtype><recordid>eNqFkUFu1DAYhS0EKkNhyw7JC4RgkcGOY8fZVIKq0EpFdNG99cd2Jh4ldrAzhbkHF4GD9Ey4mlBgxcq23uf3fvsh9JySNSVMvk3bdbud1qQmJa2bB2hFq1oUnEn6EK0IIXVBqZSP0ZOUtoRkseZH6KiRgglBVuj72bewsT7sEgZvsPXm91HDbHUfBhidtwk737vWzXjuLZ5iMDs9u-Bx6PAIOoaph43NUJf5EeYQ93fUbJ3Hrz9dXL3B9PYHvnGAAd_-xGBiDtF2yiAerXE5y-SN7sG7ND5FjzoYkn22rMfo-sPZ9el5cfn548Xpu8tCV1xWBedCSMuorBogdUsYaThntWg14Z3mtDKStMBoZbU0xlamk3XDm7LMOmctO0YnB9tp1-YhtPVzhEFN0Y0Q9yqAU_8q3vVqE24U5YKLhmSDV4tBDF92Ns1qdEnbYQBv8xeqzDS8YiKD6wOYfyqlaLv7EErUXY0qbVWuUS015gsv_h7tHl96y_rLRYekYegieO3SH1eRX12XGWMH7Ksb7P4_oer91bkoScV-Ac8qu1E</recordid><startdate>199811</startdate><enddate>199811</enddate><creator>Haskó, György</creator><creator>Shanley, Thomas P</creator><creator>Egnaczyk, Greg</creator><creator>Németh, Zoltán H</creator><creator>Salzman, Andrew L</creator><creator>Vizi, E Sylvester</creator><creator>Szabó, Csaba</creator><general>Blackwell Publishing Ltd</general><general>Nature Publishing</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>199811</creationdate><title>Exogenous and endogenous catecholamines inhibit the production of macrophage inflammatory protein (MIP) 1α via a β adrenoceptor mediated mechanism</title><author>Haskó, György ; Shanley, Thomas P ; Egnaczyk, Greg ; Németh, Zoltán H ; Salzman, Andrew L ; Vizi, E Sylvester ; Szabó, Csaba</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4584-55668e31849a07b030955376bc05fc514d80ba314ec8dde4df8795922c0553b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1998</creationdate><topic>adrenergic</topic><topic>Adrenergic alpha-Agonists - pharmacology</topic><topic>Adrenergic beta-Agonists - pharmacology</topic><topic>Animals</topic><topic>Antibody Formation</topic><topic>Bacterial diseases</topic><topic>Biological and medical sciences</topic><topic>Cell Adhesion - physiology</topic><topic>Cells, Cultured</topic><topic>Chemokine CCL3</topic><topic>Chemokine CCL4</topic><topic>Chemokines</topic><topic>Cyclic AMP - metabolism</topic><topic>Cyclic AMP - physiology</topic><topic>Epinephrine - pharmacology</topic><topic>Epinephrine - physiology</topic><topic>Experimental bacterial diseases and models</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Fundamental immunology</topic><topic>Immunobiology</topic><topic>Infectious diseases</topic><topic>inflammation</topic><topic>Isoproterenol - pharmacology</topic><topic>Lipopolysaccharides - pharmacology</topic><topic>macrophage</topic><topic>Macrophage Inflammatory Proteins - biosynthesis</topic><topic>Macrophage Inflammatory Proteins - blood</topic><topic>Macrophages, Peritoneal - drug effects</topic><topic>Macrophages, Peritoneal - metabolism</topic><topic>Macrophages, Peritoneal - physiology</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Monocytes, macrophages</topic><topic>Myeloid cells: ontogeny, maturation, markers, receptors</topic><topic>Norepinephrine - pharmacology</topic><topic>Norepinephrine - physiology</topic><topic>Receptors, Adrenergic, beta - drug effects</topic><topic>Receptors, Adrenergic, beta - physiology</topic><topic>RNA, Messenger - metabolism</topic><topic>sympathetic nervous system</topic><topic>Sympathetic Nervous System - drug effects</topic><topic>Sympathetic Nervous System - physiology</topic><topic>Thioglycolates - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Haskó, György</creatorcontrib><creatorcontrib>Shanley, Thomas P</creatorcontrib><creatorcontrib>Egnaczyk, Greg</creatorcontrib><creatorcontrib>Németh, Zoltán H</creatorcontrib><creatorcontrib>Salzman, Andrew L</creatorcontrib><creatorcontrib>Vizi, E Sylvester</creatorcontrib><creatorcontrib>Szabó, Csaba</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>British journal of pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Haskó, György</au><au>Shanley, Thomas P</au><au>Egnaczyk, Greg</au><au>Németh, Zoltán H</au><au>Salzman, Andrew L</au><au>Vizi, E Sylvester</au><au>Szabó, Csaba</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exogenous and endogenous catecholamines inhibit the production of macrophage inflammatory protein (MIP) 1α via a β adrenoceptor mediated mechanism</atitle><jtitle>British journal of pharmacology</jtitle><addtitle>Br J Pharmacol</addtitle><date>1998-11</date><risdate>1998</risdate><volume>125</volume><issue>6</issue><spage>1297</spage><epage>1303</epage><pages>1297-1303</pages><issn>0007-1188</issn><eissn>1476-5381</eissn><coden>BJPCBM</coden><abstract>1
Noradrenaline (NA) and adrenaline (Ad) are modulators of cytokine production. Here we investigated the role of these neurotransmitters in the regulation of macrophage inflammatory protein (MIP)‐1α expression.
2
Pretreatment of RAW 264.7 macrophages with NA or Ad decreased, in a concentration‐dependent manner (1 nm–100 μm), MIP‐1α release induced by bacterial lipopolysaccharide (LPS 10 ng ml−1 LPS). The effect of NA was reversed by the selective β‐adrenoceptor antagonist propranolol (10 μm), but not by the α‐adrenoceptor antagonist phentolamine (10 μm).
3
In the concentration range of 10 nm–10 μm, isoproterenol, a β‐adrenoceptor agonist, but not phenylephrine (a selective α1‐adrenoceptor agonist) or UK‐14304 (a selective α2‐adrenoceptor agonist) mimicked the inhibitory effects of catecholamines on MIP‐1α production. Increases in intracellular cyclic adenosine monophosphate, elicited either by the selective type IV phosphodiesterase inhibitor rolipram (0.1–10 μm), or by prostaglandin E2, (10 nm–10 μm) decreased MIP‐1α release, suggesting that increased cyclic AMP may contribute to the suppression of MIP‐1α release by β‐adrenoceptor stimulation.
4
Northern blot analysis demonstrated that NA (100 nm–10 μm), Ad, isoproterenol, as well as rolipram (100 nm–10 μm) decreased LPS‐induced MIP‐1α mRNA accumulation. NA and Ad (1–100 μm) also decreased MIP‐1α production in thioglycollate‐elicited murine peritoneal macrophages.
5
Pretreatment of mice with either isoproterenol (10 mg kg−1, i.p.) or rolipram (25 mg kg−1, i.p.) decreased LPS‐induced plasma levels of MIP‐1α, while propranolol (10 mg kg−1, i.p.) augmented the production of this chemokine, confirming the role of a β‐adrenoceptor mediated endogenous catecholamine action in the regulation of MIP‐1α production in vivo.
6
Thus, based on our data we conclude that catecholamines are important endogenous regulators of MIP‐1α expression in inflammation.
British Journal of Pharmacology (1998) 125, 1297–1303; doi:10.1038/sj.bjp.0702179</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>9863660</pmid><doi>10.1038/sj.bjp.0702179</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0007-1188 |
ispartof | British journal of pharmacology, 1998-11, Vol.125 (6), p.1297-1303 |
issn | 0007-1188 1476-5381 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_1565690 |
source | Wiley-Blackwell Read & Publish Collection; PubMed Central |
subjects | adrenergic Adrenergic alpha-Agonists - pharmacology Adrenergic beta-Agonists - pharmacology Animals Antibody Formation Bacterial diseases Biological and medical sciences Cell Adhesion - physiology Cells, Cultured Chemokine CCL3 Chemokine CCL4 Chemokines Cyclic AMP - metabolism Cyclic AMP - physiology Epinephrine - pharmacology Epinephrine - physiology Experimental bacterial diseases and models Fundamental and applied biological sciences. Psychology Fundamental immunology Immunobiology Infectious diseases inflammation Isoproterenol - pharmacology Lipopolysaccharides - pharmacology macrophage Macrophage Inflammatory Proteins - biosynthesis Macrophage Inflammatory Proteins - blood Macrophages, Peritoneal - drug effects Macrophages, Peritoneal - metabolism Macrophages, Peritoneal - physiology Male Medical sciences Mice Mice, Inbred BALB C Monocytes, macrophages Myeloid cells: ontogeny, maturation, markers, receptors Norepinephrine - pharmacology Norepinephrine - physiology Receptors, Adrenergic, beta - drug effects Receptors, Adrenergic, beta - physiology RNA, Messenger - metabolism sympathetic nervous system Sympathetic Nervous System - drug effects Sympathetic Nervous System - physiology Thioglycolates - pharmacology |
title | Exogenous and endogenous catecholamines inhibit the production of macrophage inflammatory protein (MIP) 1α via a β adrenoceptor mediated mechanism |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A02%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exogenous%20and%20endogenous%20catecholamines%20inhibit%20the%20production%20of%20macrophage%20inflammatory%20protein%20(MIP)%201%CE%B1%20via%20a%20%CE%B2%20adrenoceptor%20mediated%20mechanism&rft.jtitle=British%20journal%20of%20pharmacology&rft.au=Hask%C3%B3,%20Gy%C3%B6rgy&rft.date=1998-11&rft.volume=125&rft.issue=6&rft.spage=1297&rft.epage=1303&rft.pages=1297-1303&rft.issn=0007-1188&rft.eissn=1476-5381&rft.coden=BJPCBM&rft_id=info:doi/10.1038/sj.bjp.0702179&rft_dat=%3Cproquest_pubme%3E69095436%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4584-55668e31849a07b030955376bc05fc514d80ba314ec8dde4df8795922c0553b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69095436&rft_id=info:pmid/9863660&rfr_iscdi=true |