Loading…

A comparison of an A1 adenosine receptor agonist (CVT‐510) with diltiazem for slowing of AV nodal conduction in guinea‐pig

The purpose of this study was to compare the pharmacological properties (i.e. the AV nodal depressant, vasodilator, and inotropic effects) of two AV nodal blocking agents belonging to different drug classes; a novel A1 adenosine receptor (A1 receptor) agonist, N‐(3(R)‐tetrahydrofuranyl)‐6‐aminopurin...

Full description

Saved in:
Bibliographic Details
Published in:British journal of pharmacology 1999-01, Vol.126 (1), p.137-146
Main Authors: Snowdy, Stephen, Liang, Hui Xiu, Blackburn, Brent, Lum, Robert, Nelson, Marek, Wang, Lisa, Pfister, Jürg, Sharma, Bhavender P, Wolff, Andrew, Belardinelli, Luiz
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purpose of this study was to compare the pharmacological properties (i.e. the AV nodal depressant, vasodilator, and inotropic effects) of two AV nodal blocking agents belonging to different drug classes; a novel A1 adenosine receptor (A1 receptor) agonist, N‐(3(R)‐tetrahydrofuranyl)‐6‐aminopurine riboside (CVT‐510), and the prototypical calcium channel blocker diltiazem. In the atrial‐paced isolated heart, CVT‐510 was approximately 5 fold more potent to prolong the stimulus‐to‐His bundle (S–H interval), a measure of slowing AV nodal conduction (EC50=41 nM) than to increase coronary conductance (EC50=200 nM). At concentrations of CVT‐510 (40 nM) and diltiazem (1 μM) that caused equal prolongation of S–H interval (∼10 ms), diltiazem, but not CVT‐510, significantly reduced left ventricular developed pressure (LVP) and markedly increased coronary conductance. CVT‐510 shortened atrial (EC50=73 nM) but not the ventricular monophasic action potentials (MAP). In atrial‐paced anaesthetized guinea‐pigs, intravenous infusions of CVT‐510 and diltiazem caused nearly equal prolongations of P–R interval. However, diltiazem, but not CVT‐510, significantly reduced mean arterial blood pressure. Both CVT‐510 and diltiazem prolonged S–H interval, i.e., slowed AV nodal conduction. However, the A1 receptor‐selective agonist CVT‐510 did so without causing the negative inotropic, vasodilator, and hypotensive effects associated with diltiazem. Because CVT‐510 did not affect the ventricular action potential, it is unlikely that this agonist will have a proarrythmic action in ventricular myocardium. British Journal of Pharmacology (1999) 126, 137–146; doi:10.1038/sj.bjp.0702287
ISSN:0007-1188
1476-5381
DOI:10.1038/sj.bjp.0702287